Electrochemical investigation of nickel pattern electrodes in H2/H2O and CO/CO2 atmospheres

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

In this study, nickel pattern electrodes were electrochemically investigated in a three-electrode setup, operating both with H2 / H2 O and CO/ CO2 atmospheres. Heating introduced structural differences in the nickel layer among the pattern electrodes, which appear to affect the electrode performance. Both dense and porous nickel pattern electrodes were formed by heating. Holes appeared in the nickel layer of the porous pattern electrodes, where the open cavity triple phase boundaries exhibited different limiting processes than open triple phase boundary electrodes of the dense electrode. As the temperature was raised in the experiment, the electrodes stabilized, with a degraded behavior that seemed to be strongly coupled to the structural changes in the electrode. It was possible to compare literature results with high temperature impedance measurements in H2 / H2 O presented here, while new results at lower temperatures in H2 / H2 O are also presented. Impedance spectroscopy measurements were performed, and the gas dependence of the polarization resistance was observed as the mixture ratios and temperatures were varied in both atmospheres. A positive relation between the polarization resistance and the partial pressure of CO was determined for the dense nickel pattern electrode, which agrees with previous results using nickel point electrodes. © 2010 The Electrochemical Society.
Original languageEnglish
JournalElectrochemical Society. Journal
Publication date2010
Volume157
Issue11
PagesB1588-B1596
ISSN0013-4651
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 6

Keywords

  • Fuel Cells and Hydrogen, Electrolysis
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 4953258