Electrochemical Impedance Studies of SOFC Cathodes

Publication: Research - peer-reviewConference article – Annual report year: 2007

View graph of relations

Mixed ion- and electron-conducting composite electrodes consisting of doped ceria and perovskite have been studied by electrochemical impedance spectroscopy (EIS) at different temperatures and oxygen partial pressures. This paper aims to describe the different contributions to the polarisation impedance of the cathode at intermediate operating temperatures. The perovskite is of the La-Sr-Co-Fe type. The EIS response of symmetrical cells with a thick (similar to 200 mu m) gadolinia doped ceria electrolyte was compared with the impedance contribution of the cathode of a full anode supported cell. The full cells had a Ni-YSZ anode and anode support, a thin YSZ electrolyte, and a CGO barrier layer. The symmetric and full cell cathode responses were compared at open-circuit voltage. Humidified hydrogen was used as the fuel in the full cell measurements. Differential analysis of the impedance data was used to identify frequency ranges where changes occur upon degradation and oxygen partial pressure variations.
Original languageEnglish
JournalE C S Transactions
Publication date2007
Volume7
Issue1
Pages1261-1270
ISSN1938-5862
DOIs
StatePublished

Conference

Conference10th International symposium on solid oxide fuel cells
CountryJapan
CityNara
Period03/06/0708/06/07

Bibliographical note

Copyright The Electrochemical Society, Inc. [2007]. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS).

CitationsWeb of Science® Times Cited: 2
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 4456544