Electrochemical characterisation of solid oxide cell electrodes for hydrogen production

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

Oxygen electrodes and steam electrodes are designed and tested to develop improved solid oxide electrolysis cells for H2 production with the cell support on the oxygen electrode. The electrode performance is evaluated by impedance spectroscopy testing of symmetric cells at open circuit voltage (OCV) in a one-atmosphere set-up. For the oxygen electrode, nano-structured La0.75Sr0.25MnO3 (LSM25) is impregnated into a LSM25/yttria stabilised zirconia (YSZ) composite, whereas for the steam electrode, nano-structured Ni and Ce0.8Gd0.2O2−δ (CGO) is impregnated into a Sr0.94Ti0.9Nb0.10O3−δ (STN) backbone. In the present study, the best performing oxygen electrode is a LSM25-YSZ composite with 20% porosity and impregnated with a LSM25 solution measuring a polarisation resistance (Rp) of 0.12 Ω cm2 at 850 °C in oxygen. For the steam electrode, the best performance is obtained for a STN backbone, sintered at 1200 °C and impregnated with CGO/Ni, with an Rp of 0.08 Ω cm2 at 850 °C in 3% H2O/H2.
Original languageEnglish
JournalJournal of Power Sources
Publication date2011
Volume196
Issue9
Pages4396-4403
ISSN0378-7753
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 7

Keywords

  • Solid Oxide Fuel Cells, Fuel Cells and Hydrogen
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5448500