Electrochemical ammonia production on molybdenum nitride nanoclusters - DTU Orbit (27/10/2018)

Electrochemical ammonia production on molybdenum nitride nanoclusters

Theoretical investigations of electrochemical production of ammonia at ambient temperature and pressure on nitrogen covered molybdenum nanoparticles are presented. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free energy profile for electrochemical protonation of N2 and N adatoms on cuboctahedral Mo13 nanoparticles. Pathways for electrochemical ammonia production via direct protonation of N adatoms and N2 admolecules with an onset potential as low as -0.5 V and generally lower than -0.8 V on both a nitrogen covered or clean Mo nanoparticle. Calculations presented here show that nitrogen dissociation at either nitrogen vacancies on a nitrogen covered molybdenum particle or at a clean molybdenum particle is unlikely to occur at ambient conditions due to very high activation barriers of 1.8 eV. The calculations suggest that the nitrogen will be favored at the surface compared to hydrogen even at potentials of -0.8 V and the Faradaic losses due to HER should be low.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Atomic scale modelling and materials, Center for Atomic-scale Materials Design
Contributors: Howalt, J. G., Vegge, T.
Pages: 20957-20965
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Physical Chemistry Chemical Physics
Volume: 15
Issue number: 48
ISSN (Print): 1463-9076
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.04 SJR 1.686 SNIP 1.089
Web of Science (2017): Impact factor 3.906
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.06 SJR 1.685 SNIP 1.113
Web of Science (2016): Impact factor 4.123
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.45 SJR 1.725 SNIP 1.205
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.29 SJR 1.771 SNIP 1.239
Web of Science (2014): Impact factor 4.493
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.05 SJR 1.72 SNIP 1.207
Web of Science (2013): Impact factor 4.198
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.67 SJR 1.921 SNIP 1.177
Web of Science (2012): Impact factor 3.829
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.6 SJR 1.707 SNIP 1.19
Web of Science (2011): Impact factor 3.573
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.817 SNIP 1.199
Web of Science (2010): Impact factor 3.454
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.147 SNIP 1.364
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.166 SNIP 1.198
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.845 SNIP 1.123
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.477 SNIP 1.118
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.423 SNIP 1.1
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.191 SNIP 1.012
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.146 SNIP 0.929
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.634 SNIP 0.967
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.13 SNIP 1.115
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.948 SNIP 1.079
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.121 SNIP 0
Original language: English
Electronic versions:
Electrochemical_ammonia_production.pdf
DOIs:
10.1039/C3CP53160K

Bibliographical note
Open access article

Research output: Research - peer-review › Journal article – Annual report year: 2013