Electrocatalysis of chemically synthesized noble metal nanoparticles on carbon electrodes - DTU Orbit (12/12/2018)

Electrocatalysis of chemically synthesized noble metal nanoparticles on carbon electrodes

Noble metal nanoparticles (NPs), such as platinum (Pt) and palladium (Pd) NPs are promising catalysts for dioxygen reduction and oxidation of molecules such as formic acid and ethanol in fuel cells. Carbon nanomaterials are ideal supporting materials for electrochemical catalysts due to their good conductivity, chemical inertness and low cost. Improvement of catalytic efficiency and stability of the NPs is, however, essential for their wider applications in electrochemical energy conversion/storage. The activities of noble metal catalysts depend not only on their size, composition, and shapes but also on their interfacial interaction with the supporting electrodes. In this work we aim at chemical production of size and shape controlled, specifically 22 nm cubic Pd NPs, and further understanding of the Pd NPs as electrocatalysts at the nanometer scale using both scanning tunneling microscopy (STM) and atomic force microscopy (AFM) which have proved to be highly efficient techniques to map the in situ structures of selfassembled molecular monolayers at molecular or sub-molecular resolution. Electrocatalysis of the Pd NPs immobilized on atomically flat, highly oriented pyrolytic graphite (HOPG) will be investigated by electrochemical SPM. This study offers promise for development of new high-efficiency catalyst types with low-cost for fuel cell technology.

General information
State: Published
Organisations: Department of Chemistry, NanoChemistry, Organic Chemistry
Contributors: Zhang, L., Ulstrup, J., Zhang, J.
Number of pages: 1
Publication date: 2015
Peer-reviewed: Yes
Event: Poster session presented at 6th Symposium on Carbon and Related Nanomaterials, Copenhagen, Denmark.
Electronic versions:
Electrocatalysis_of_chemically_synthesized_noble_metal_nanoparticles_on_carbon_electrodes.pdf
Source: PublicationPreSubmission
Source-ID: 118180784
Research output: Research - peer-review > Poster – Annual report year: 2015