Efficient wave-function matching approach for quantum transport calculations

Publication: Research - peer-reviewJournal article – Annual report year: 2009

View graph of relations

The wave-function matching (WFM) technique has recently been developed for the calculation of electronic transport in quantum two-probe systems. In terms of efficiency it is comparable to the widely used Green's function approach. The WFM formalism presented so far requires the evaluation of all the propagating and evanescent bulk modes of the left and right electrodes in order to obtain the correct coupling between device and electrode regions. In this paper we will describe a modified WFM approach that allows for the exclusion of the vast majority of the evanescent modes in all parts of the calculation. This approach makes it feasible to apply iterative techniques to efficiently determine the few required bulk modes, which allows for a significant reduction of the computational expense of the WFM method. We illustrate the efficiency of the method on a carbon nanotube field-effect-transistor device displaying band-to-band tunneling and modeled within the semiempirical extended Hückel theory framework.
Original languageEnglish
JournalPhysical Review B (Condensed Matter and Materials Physics)
Publication date2009
Volume79
Issue20
Pages205322
ISSN1098-0121
DOIs
StatePublished

Bibliographical note

Copyright 2009 American Physical Society

CitationsWeb of Science® Times Cited: 9
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 4816825