Efficient many-body calculations for two-dimensional materials using exact limits for the screened potential: Band gaps of MoS\(_2\), h-BN, and phosphorene - DTU Orbit (10/01/2019)

Calculating the quasiparticle (QP) band structure of two-dimensional (2D) materials within the GW self-energy approximation has proven to be a rather demanding computational task. The main reason is the strong \(q \) dependence of the 2D dielectric function around \(q = 0 \) that calls for a much denser sampling of the Brillouin zone (BZ) than is necessary for similar three-dimensional solids. Here, we use an analytical expression for the small \(q \) limit of the 2D response function to perform the BZ integral over the critical region around \(q = 0 \). This drastically reduces the requirements on the \(q \)-point mesh and implies a significant computational speedup. For example, in the case of monolayer MoS\(_2\), convergence of the \(G_0W_0 \) band gap to within similar to 0.1 eV is achieved with 12 x 12 \(q \) points rather than the 36 x 36 mesh required with discrete BZ sampling techniques. We perform a critical assessment of the band gap of the three prototypical 2D semiconductors, MoS\(_2\), h-BN, and phosphorene, including the effect of self-consistency at the GW\(_0\) level. The method is implemented in the open source code GPAW.

General information
State: Published
Organisations: Center for Nanostructured Graphene, Department of Physics, Theoretical Atomic-scale Physics
Contributors: Rasmussen, F. A., Schmidt, P. S., Winther, K. T., Thygesen, K. S.
Number of pages: 9
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Physical Review B
Volume: 94
Issue number: 15
Article number: 155406
ISSN (Print): 2469-9950
Ratings:
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.34 SJR 1.604 SNIP 1.04
Web of Science (2017): Impact factor 3.813
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.16 SJR 2.339 SNIP 1.151
Web of Science (2016): Impact factor 3.836
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 2.8 SJR 2.377 SNIP 1.13
Web of Science (2015): Impact factor 3.718
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.3 SJR 2.762 SNIP 1.316
Web of Science (2014): Impact factor 3.736
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.55 SJR 2.813 SNIP 1.326
Web of Science (2013): Impact factor 3.664
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 3.57 SJR 3.173 SNIP 1.378
Web of Science (2012): Impact factor 3.767
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Scopus rating (2011): CiteScore 3.61 SJR 3.326 SNIP 1.423
Web of Science (2011): Impact factor 3.691
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes