Efficient ionic liquid-based platform for multi-enzymatic conversion of carbon dioxide to methanol

Efficient ionic liquid-based platform for multi-enzymatic conversion of carbon dioxide to methanol

Low yields commonly obtained during enzymatic conversion of CO₂ to methanol are attributed to low CO₂ solubility in water. In this study, four selected ionic liquids with high CO₂ solubility were separately added to the multi-enzyme reaction mixture and the yields were compared to the pure aqueous system (control). In an aqueous 20% [CH][Glu] system, yield increased ca. 3.5-fold compared to the control (ca. 5-fold if NADH regeneration was incorporated). Molecular dynamics simulation revealed that CO₂ remains for longer in a productive conformation in the enzyme in the presence of [CH][Glu], which explains the marked increase of yield that was also confirmed by isothermal titration calorimetry – lower energy (ΔG) binding of CO₂ to FDH. The results suggest that the accessibility of CO₂ to the enzyme active site depends on the absence/presence and nature of the ionic liquid, and that the enzyme conformation determines CO₂ retention and hence final conversion.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, PROSYS - Process and Systems Engineering Centre, CERE – Center for Energy Resources Engineering, The Danish Polymer Centre, Chinese Academy of Sciences
Pages: 4339-4348
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Green Chemistry
Volume: 20
Issue number: 18
ISSN (Print): 1463-9262
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 8.99 SJR 2.496 SNIP 1.847
Web of Science (2017): Impact factor 8.586
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.86 SJR 2.598 SNIP 2.021
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 8.21 SJR 2.452 SNIP 1.884
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 8.05 SJR 2.386 SNIP 1.989
Web of Science (2014): Impact factor 8.02
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 7.44 SJR 2.28 SNIP 1.804
Web of Science (2013): Impact factor 6.852
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 6.64 SJR 2.444 SNIP 1.701
Web of Science (2012): Impact factor 6.828
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 6.46 SJR 2.32 SNIP 1.641
Web of Science (2011): Impact factor 6.32
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.142 SNIP 1.625
Web of Science (2010): Impact factor 5.472
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.088 SNIP 1.729
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.004 SNIP 1.544
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.131 SNIP 1.521
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.554 SNIP 1.414
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.407 SNIP 1.317
Scopus rating (2004): SJR 1.375 SNIP 1.404
Scopus rating (2003): SJR 0.903 SNIP 1.081
Scopus rating (2002): SJR 1.962 SNIP 1.274
Scopus rating (2001): SJR 1.035 SNIP 1.346
Scopus rating (2000): SJR 0.775 SNIP 1.193
Original language: English
DOIs:
10.1039/c8gc02230e

Bibliographical note
Source: FindIt
Source-ID: 2438682269
Research output: Research - peer-review › Journal article – Annual report year: 2018