Efficient first principles simulation of electron scattering factors for transmission electron microscopy

Electron microscopy is a powerful tool for studying the properties of materials down to their atomic structure. In many cases, the quantitative interpretation of images requires simulations based on atomistic structure models. These typically use the independent atom approximation that neglects bonding effects, which may, however, be measurable and of physical interest. Since all electrons and the nuclear cores contribute to the scattering potential, simulations that go beyond this approximation have relied on computationally highly demanding all-electron calculations. Here, we describe a new method to generate ab initio electrostatic potentials when describing the core electrons by projector functions. Combined with an interface to quantitative image simulations, this implementation enables an easy and fast means to model electron scattering. We compare simulated transmission electron microscopy images and diffraction patterns to experimental data, showing an accuracy equivalent to earlier all-electron calculations at a much lower computational cost.

General information
State: Published
Organisations: Theoretical Atomic-scale Physics, Department of Physics, University of Vienna, Ulm University
Number of pages: 7
Pages: 16-22
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: ULTRAMICROSCOPY
Volume: 197
ISSN (Print): 0304-3991
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.06 SJR 1.824 SNIP 1.317
Web of Science (2017): Impact factor 2.929
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.82 SJR 1.896 SNIP 1.176
Web of Science (2016): Impact factor 2.843
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.78 SJR 2.066 SNIP 1.326
Web of Science (2015): Impact factor 2.874
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.59 SJR 1.628 SNIP 1.598
Web of Science (2014): Impact factor 2.436
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.66 SJR 1.761 SNIP 1.323
Web of Science (2013): Impact factor 2.745
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.31 SJR 1.866 SNIP 1.562
Web of Science (2012): Impact factor 2.47
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1