Efficiency of fisheries is increasing at the ecosystem level - DTU Orbit (10/12/2018)

Managing fisheries presents trade-offs between objectives, for example yields, profits, minimizing ecosystem impact, that have to be weighed against one another. These trade-offs are compounded by interacting species and fisheries at the ecosystem level. Weighing objectives becomes increasingly challenging when managers have to consider opposing objectives from different stakeholders. An alternative to weighing incomparable and conflicting objectives is to focus on win-wins until Pareto efficiency is achieved: a state from which it is impossible to improve with respect to any objective without regressing at least one other. We investigate the ecosystem-level efficiency of fisheries in five large marine ecosystems (LMEs) with respect to yield and an aggregate measure of ecosystem impact using a novel calibration of size-based ecosystem models. We estimate that fishing patterns in three LMEs (North Sea, Barents Sea and Benguela Current) are nearly efficient with respect to long-term yield and ecosystem impact and that efficiency has improved over the last 30 years. In two LMEs (Baltic Sea and North East US Continental Shelf), fishing is inefficient and win-wins remain available. We additionally examine the efficiency of North Sea and Baltic Sea fisheries with respect to economic rent and ecosystem impact, finding both to be inefficient but steadily improving. Our results suggest the following: (i) a broad and encouraging trend towards ecosystem-level efficiency of fisheries; (ii) that ecosystem-scale win-wins, especially with respect to conservation and profits, may still be common; and (iii) single-species assessment approaches may overestimate the availability of win-wins by failing to account for trade-offs across interacting species.

General information
State: Published
Organisations: National Institute of Aquatic Resources, Centre for Ocean Life, University of Washington, University of California at Santa Barbara
Contributors: Jacobsen, N. S., Burgess, M. G., Andersen, K. H.
Pages: 199-211
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Fish and Fisheries
Volume: 18
Issue number: 2
ISSN (Print): 1467-2960
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.94 SJR 3.615 SNIP 3.156
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.7 SJR 3.703 SNIP 3.156
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 7.05 SJR 3.736 SNIP 2.997
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 7.13 SJR 3.485 SNIP 3.301
Web of Science (2014): Impact factor 8.258
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.19 SJR 3.503 SNIP 3.067
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 6.14 SJR 3.608 SNIP 2.822
Web of Science (2012): Impact factor 5.855
ISI indexed (2012): ISI indexed yes