Effects of oil and oil burn residues on seabird feathers - DTU Orbit (25/12/2018)

Effects of oil and oil burn residues on seabird feathers

It is well known, that in case of oil spill, seabirds are among the groups of animals most vulnerable. Even small amounts of oil can have lethal effects by destroying the waterproofing of their plumage, leading to loss of insulation and buoyancy. In the Arctic these impacts are intensified. To protect seabirds, a rapid removal of oil is crucial and in situ burning could be an efficient method. In the present work exposure effects of oil and burn residue in different doses was studied on seabird feathers from legally hunted Common eider (Somateria mollissima) by examining changes in total weight of the feather and damages on the microstructure (Amalgamation Index) of the feathers before and after exposure. The results of the experiments indicate that burn residues from in situ burning of an oil spill have similar or larger fouling and damaging effects on seabird feathers, as compared to fresh oil.

General information
State: Published
Organisations: Department of Civil Engineering, Section for Building Design, Aarhus University
Pages: 446-452
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Marine Pollution Bulletin
Volume: 109
Issue number: 1
ISSN (Print): 0025-326X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.4 SJR 1.147 SNIP 1.228
Web of Science (2017): Impact factor 3.241
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.46 SJR 1.332 SNIP 1.35
Web of Science (2016): Impact factor 3.146
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.23 SJR 1.252 SNIP 1.276
Web of Science (2015): Impact factor 3.099
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.04 SJR 1.303 SNIP 1.425
Web of Science (2014): Impact factor 2.991
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.89 SJR 1.21 SNIP 1.533
Web of Science (2013): Impact factor 2.793
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.64 SJR 1.235 SNIP 1.385
Web of Science (2012): Impact factor 2.531
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.57 SJR 1.251 SNIP 1.35
Web of Science (2011): Impact factor 2.503
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.292 SNIP 1.282
Web of Science (2010): Impact factor 2.359
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.313 SNIP 1.209
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.379 SNIP 1.324
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.346 SNIP 1.37
Scopus rating (2006): SJR 1.197 SNIP 1.39
Scopus rating (2005): SJR 0.947 SNIP 1.26
Scopus rating (2004): SJR 1.061 SNIP 1.3
Scopus rating (2003): SJR 1.231 SNIP 1.355
Scopus rating (2002): SJR 1.118 SNIP 1.308
Scopus rating (2001): SJR 1.001 SNIP 1.022
Scopus rating (2000): SJR 0.85 SNIP 0.945
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.11 SNIP 1.269
Original language: English
Keywords: Burn residues, Damage, Feathers, In situ burning, Oil spill, Seabirds
Electronic versions:
Manuscript_revised_Final.pdf. Embargo ended: 24/05/2018
DOIs:
10.1016/j.marpolbul.2016.05.029
Source: FindIt
Source-ID: 2304682502
Research output: Research - peer-review; Journal article – Annual report year: 2016