Effects of milling on the extraction efficiency of incurred pesticides in cereals - DTU Orbit (20/03/2019)

Effects of milling on the extraction efficiency of incurred pesticides in cereals
This study investigated the effects of particle size and milling temperature on the extraction efficiencies of pesticide residues from cereal flour. Samples of cereal grains (barley, oat, rye and wheat) were milled using a centrifugal mill with four different sieves (0.2, 1.0, 3.0 and 5.0 mm) or a knife mill both at room temperature and after freezing of the grain at −80°C overnight. The incurred pesticides in the test materials were extracted by the QuEChERS method and analysed by LC-MS/MS and GC-MS/MS. The particle size distribution for the milled samples was determined using a vibratory sieve shaker. Based on the pesticide levels recovered from each of the different millings and the corresponding particle size distributions, it was confirmed that smaller average particle sizes increase the extraction efficiency up to 31%, with all other factors equal. The cereals milled at room temperature produced lower pesticide extraction efficiencies compared with cereals milled when still frozen, especially for heat-sensitive pesticides. Furthermore, milling frozen grains was easier and resulted in more homogeneous samples with smaller relative particle sizes.

General information
State: Published
Organisations: National Food Institute, Research group for Analytical Food Chemistry
Contributors: Herrmann, S. S., Hajeb, P., Andersen, G., Poulsen, M. E.
Number of pages: 11
Pages: 1948-1958
Publication date: 2017
Peer-reviewed: Yes

Publication information
Volume: 34
Issue number: 11
ISSN (Print): 1944-0049
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.29 SJR 0.74 SNIP 0.894
Web of Science (2017): Impact factor 2.129
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.12 SJR 0.796 SNIP 0.95
Web of Science (2016): Impact factor 2.047
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.11 SJR 0.778 SNIP 0.878
Web of Science (2015): Impact factor 1.878
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.07 SJR 0.764 SNIP 0.978
Web of Science (2014): Impact factor 1.802
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.55 SJR 1.041 SNIP 1.168
Web of Science (2013): Impact factor 2.341
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 2.12 SJR 0.906 SNIP 1.123
Web of Science (2012): Impact factor 2.22
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes