Effects of different cooling principles on thermal sensation and physiological responses - DTU Orbit (12/03/2019)

Effects of different cooling principles on thermal sensation and physiological responses

Applying low exergy cooling concepts in the built environment allows reduction of use of high quality energy sources. Non-uniform thermal conditions, which may occur due to application of low ex systems, can result in discomfort. Two different cooling principles were studied: passive (through convection in terms of increased air velocities) and active cooling (through convection or radiation). Furthermore, two different ventilation techniques were included: mixing and displacement ventilation. Ten male subjects (age: 20-29) were exposed to six different cases: (1) PC-C-M: passive cooling through mixing ventilation, (2) AC-C-M: active cooling through convection by mixing ventilation, (3) AC-C-D: active cooling through convection by displacement ventilation, (4) AC-R-M-C: active cooling through radiation by the ceiling and mixing ventilation, (5) AC-R-M-F: active cooling through radiation by the floor and mixing ventilation, and (6) AC-R-D-F: active cooling through radiation by the floor and displacement ventilation. Though all cases were designed at PMV = 0, subjective data indicate significant differences between the cases. For the prediction of thermal sensation and thermal comfort under non-uniform conditions, the operative temperature only is not sufficient. Combined local factors play an important role in the comfort assessment. Furthermore, non-uniform environments, as case 6, can achieve a comparable or even a more comfortable assessment compared to uniform environments.

General information

State: Published
Organisations: Department of Civil Engineering, Section for Indoor Environment, Avans University of Applied Sciences, Eindhoven University of Technology
Pages: 116-125
Publication date: 2013
Peer-reviewed: Yes

Publication information

Journal: Energy and Buildings
Volume: 62
ISSN (Print): 0378-7788
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.96 SJR 2.061 SNIP 2.12
Web of Science (2017): Impact factor 4.457
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.64 SJR 2.055 SNIP 1.968
Web of Science (2016): Impact factor 4.067
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.07 SJR 2.04 SNIP 2.146
Web of Science (2015): Impact factor 2.973
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.21 SJR 2.079 SNIP 2.875
Web of Science (2014): Impact factor 2.884
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.79 SJR 1.852 SNIP 2.404
Web of Science (2013): Impact factor 2.465
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.36 SJR 1.745 SNIP 2.696