Effects of ambient pressure on ignition and flame characteristics in diesel spray combustion
- DTU Orbit (15/01/2019)

Effects of ambient pressure on ignition and flame characteristics in diesel spray combustion

This work reports on numerical investigation of effects of ambient pressure (P_{am}) on spray combustion under engine-like conditions. Three cases with different P_{am} of 42, 85 and 170bar at a fixed ambient temperature of 1000K are considered. Zero-dimensional calculations are first performed for autoignition of stagnant adiabatic homogenous mixtures to evaluate performance of the selected diesel surrogate fuel models and to identify the P_{am} effects on the most reactive mixture. An Eulerian-based transported probability density function model is then chosen for the three-dimensional computational fluid dynamics study. The results show the predicted ignition delay times and flame lift-off lengths are in reasonably good agreement with experiment, with the relative difference below 28%. The current work reveals that low-temperature reactions occur across a wide range of mixture fraction but a noticeable rise of temperature (>100K above ambient temperature) is detected first on the fuel-lean side of the stoichiometric line in all three cases. The high-temperature ignition occurs first on the fuel-rich side in the 42 and 85bar cases, where the igniting mixture appears to be more fuel-rich in the latter case. As P_{am} is further increased to 170bar, the igniting mixture becomes more fuel-lean and the high-temperature ignition occurs across the fuel-lean side. The ignition behavior is found to depend on both physical and chemical processes. At 170bar, the reaction rate increases and the associated transition from low- to high-temperature ignition is relatively fast, as compared to the transport of warmer products from the lean zone into the fuel-rich mixture. Also, within the fuel-rich region, the local temperature is low due to liquid fuel vaporization and the condition is not appropriate for ignition. These collectively cause the high-temperature ignition to occur on the fuel-lean side. Analyses on the quasi-steady spray flame structures reveal that, apart from poorer air entrainment due to reduced lift-off length, the higher rich-zone temperature and lower scalar dissipation rate also lead to a higher peak soot volume fraction at higher P_{am}.

General information

State: Published
Organisations: Department of Mechanical Engineering, Thermal Energy, Fluid Mechanics, Coastal and Maritime Engineering, Department of Chemical and Biochemical Engineering, CHEC Research Centre, University of Birmingham, Lund University
Pages: 676-685
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Fuel
Volume: 237
ISSN (Print): 0016-2361
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.4 SJR 1.891 SNIP 2.127
Web of Science (2017): Impact factor 4.908
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.9 SJR 1.736 SNIP 2.207
Web of Science (2016): Impact factor 4.601
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.46 SJR 1.781 SNIP 2.123
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.14 SJR 1.634 SNIP 2.294
Web of Science (2014): Impact factor 3.52
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.31 SJR 1.762 SNIP 2.544
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.99 SJR 1.813 SNIP 2.425
Web of Science (2012): Impact factor 3.357
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.1 SJR 2.041 SNIP 2.423
Web of Science (2011): Impact factor 3.248
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.957 SNIP 2.298
Web of Science (2010): Impact factor 3.604
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.985 SNIP 2.27
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.613 SNIP 2.156
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.364 SNIP 1.86
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.229 SNIP 1.64
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.596 SNIP 1.73
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.203 SNIP 1.864
Scopus rating (2003): SJR 1.068 SNIP 1.446
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.065 SNIP 1.284
Scopus rating (2001): SJR 1.062 SNIP 1.269
Scopus rating (2000): SJR 1.161 SNIP 1.295
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.086 SNIP 1.141
Original language: English
Keywords: Spray flame, Transported probability density function, Ignition, Pressure effects
DOIs:
10.1016/j.fuel.2018.10.020
Source: FindIt
Source-ID: 2439951156
Research output: Research - peer-review › Journal article – Annual report year: 2019