Effects of acetoacetyl-CoA synthase expression on production of farnesene in Saccharomyces cerevisiae

Efficient production of sesquiterpenes in Saccharomyces cerevisiae requires a high flux through the mevalonate pathway. To achieve this, the supply of acetyl-CoA plays a crucial role, partially because nine moles of acetyl-CoA are necessary to produce one mole of farnesyl diphosphate, but also to overcome the thermodynamic constraint imposed on the first reaction, in which acetoacetyl-CoA is produced from two moles of acetyl-CoA by acetoacetyl-CoA thiolase. Recently, a novel acetoacetyl-CoA synthase (nphT7) has been identified from Streptomyces sp. strain CL190, which catalyzes the irreversible condensation of malonyl-CoA and acetyl-CoA to acetoacetyl-CoA and, therefore, represents a potential target to increase the flux through the mevalonate pathway. This study investigates the effect of acetoacetyl-CoA synthase on growth as well as the production of farnesene and compares different homologs regarding their efficiency. While plasmid-based expression of nphT7 did not improve final farnesene titer, the construction of an alternative pathway, which exclusively relies on the malonyl-CoA bypass, was detrimental for growth and farnesene production. The presented results indicate that the overall functionality of the bypass was limited by the efficiency of acetoacetyl-CoA synthase (nphT7). Besides modulation of the expression level, which could be used as a means to partially restore the phenotype, nphT7 from Streptomyces glaucescens showed clearly higher efficiency compared to Streptomyces sp. strain CL190.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Yeast Cell Factories, Chalmers University of Technology
Contributors: Tippmann, S., Ferreira, R., Siewers, V., Nielsen, J., Chen, Y.
Pages: 911-922
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Industrial Microbiology and Biotechnology
Volume: 44
Issue number: 6
ISSN (Print): 1367-5435
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.21 SJR 1.107 SNIP 1.02
Web of Science (2017): Impact factor 3.103
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.87 SJR 0.958 SNIP 0.94
Web of Science (2016): Impact factor 2.81
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.65 SJR 0.966 SNIP 0.998
Web of Science (2015): Impact factor 2.745
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.66 SJR 0.964 SNIP 1.328
Web of Science (2014): Impact factor 2.439
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.86 SJR 1.055 SNIP 1.272
Web of Science (2013): Impact factor 2.505
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.78 SJR 1.094 SNIP 1.52
Web of Science (2012): Impact factor 2.321
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.94 SJR 1.168 SNIP 1.443
Web of Science (2011): Impact factor 2.735
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.99 SNIP 1.262
Web of Science (2010): Impact factor 2.416
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.837 SNIP 1.002
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.816 SNIP 0.931
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.673 SNIP 0.957
Scopus rating (2006): SJR 0.746 SNIP 0.982
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.718 SNIP 1.055
Scopus rating (2004): SJR 0.671 SNIP 0.807
Scopus rating (2003): SJR 0.554 SNIP 0.727
Scopus rating (2002): SJR 0.509 SNIP 0.52
Scopus rating (2001): SJR 0.52 SNIP 0.712
Scopus rating (2000): SJR 0.745 SNIP 0.816
Scopus rating (1999): SJR 0.773 SNIP 1.018
Original language: English
Keywords: Biofuels, Isoprenoids, Metabolic engineering, Mevalonate pathway, Yeast
Electronic versions:
art_3A10.1007_2Fs10295_017_1911_6.pdf
DOIs:
10.1007/s10295-017-1911-6

Bibliographical note
This article is published with open access at Springerlink.com
Source: Findit
Source-ID: 2352369557
Research output: Research - peer-review › Journal article – Annual report year: 2017