Effective Surface Conductivity Approach for Graphene Metamaterials Based Terahertz Devices

We propose a description of graphene metamaterials properties through the effective surface conductivity. On the example of tunable absorber we demonstrate that this approach allows for fast and efficient design of functional terahertz devices.

General information
State: Published
Organisations: Department of Photonics Engineering, Plasmonics and Metamaterials, Department of Micro- and Nanotechnology, Nanointegration
Contributors: Andryieuski, A., Pizzocchero, F., Booth, T., Bøggild, P., Lavrinenko, A.
Number of pages: 1
Publication date: 2013

Host publication information
Title of host publication: (CLEO EUROPE/IQEC) European Conference on Lasers and Electro-Optics and International Quantum Electronics Conference
Publisher: IEEE
DOIs:
10.1109/CLEOE-IQEC.2013.6800799
Source: dtu
Source-ID: u::7549
Research output: Research - peer-review › Conference abstract in proceedings – Annual report year: 2013