The effect of initial water activity of MTBE (methyl tert-butyl ether) medium on CALB (Candida antarctica lipase B) catalyzed esterification reaction is investigated using experimental methods and classical molecular dynamics (MD) simulations. The experimental kinetic studies show that the initial reaction rate of CALB-catalyzed esterification reaction between butyric acid and ethanol decreases with increasing initial water activity of the medium. The highest rate of esterification is observed at the lowest water activity studied. MD simulations were performed to gain a molecular insight on the effect of initial water activity on the rate of CALB-catalyzed reaction. Our results show that hydration has an insignificant effect on the structure and flexibility of CALB. Rather, it appears that water molecules bind to certain regions ("hot spots") on the CALB surface and form clusters. The size of the water clusters at these hot spot regions gradually increase and expand with increasing water activity. Consequently, the surface area of CALB covered by the water molecules also increases. Specifically, our results indicate that a particular water cluster located close to the active site partially cover the binding pocket of substrate at high water activity. As a consequence, the effective concentration of substrate at the catalytic site decreases. Therefore, the reaction rate slows down with increasing water activity, which correlates well with the observed decrease in the experimentally determined initial reaction rate.

General information

State: Published
Organisations: Department of Chemistry, Department of Chemical and Biochemical Engineering, PROSYS - Process and Systems Engineering Centre, KT Consortium
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Catalysts
Volume: 7
Issue number: 8
Article number: 227
ISSN (Print): 2073-4344
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.23 SJR 0.855 SNIP 0.954
Web of Science (2017): Impact factor 3.465
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.44 SJR 0.928 SNIP 1.212
Web of Science (2016): Impact factor 3.082
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.45 SJR 1.054 SNIP 1.202
Web of Science (2015): Impact factor 2.964
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.17 SJR 0.682 SNIP 1.037
Web of Science (2014): Impact factor 2
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.53 SNIP 0.582
Original language: English
Keywords: Candida antarctica Lipase B, Computational Study, Kinetics Study, Water activity
Electronic versions:
catalysts_07_00227.pdf
DOIs:
10.3390/catal7080227