Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines

Floating vertical axis wind turbines (VAWTs) are promising solutions for exploiting the wind energy resource in deep waters due to their potential cost-of-energy reduction. The number of blades is one of the main concerns when designing a VAWT for offshore application. In this paper, the effect of blade number on the performance of VAWTs and dynamic behavior of floating VAWTs was comprehensively studied in a fully coupled aero-hydro-servo-elastic way. Three VAWTs with straight and parallel blades, with identical solidity and with a blade number varying from two to four, were designed using the actuator cylinder method and adapted to a semi-submersible platform. A generator torque controller was also designed based on a PI control algorithm. Time domain simulations demonstrated that the aerodynamic loads and structural responses are strongly dependent on the number of blades. In particular, by increasing the number of blades from two to three reduces the variation in the tower base bending moment more significantly than increasing it from three to four. However, the blade number does not significantly affect the generator power production due to the control strategy employed, and the platform motions and tension in mooring lines because of the compliant catenary mooring system.

General information
State: Published
Organisations: Department of Wind Energy, Aerodynamic design, Norwegian University of Science and Technology
Contributors: Cheng, Z., Aagaard Madsen, H., Gao, Z., Moan, T.
Number of pages: 14
Pages: 1285-1298
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Renewable Energy
Volume: 101
ISSN (Print): 0960-1481
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.38 SJR 1.847 SNIP 2.008
Web of Science (2017): Impact factor 4.9
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.83 SJR 1.661 SNIP 2.05
Web of Science (2016): Impact factor 4.357
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.51 SJR 1.767 SNIP 2.085
Web of Science (2015): Impact factor 3.404
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.51 SJR 1.925 SNIP 2.621
Web of Science (2014): Impact factor 3.476
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.63 SJR 1.989 SNIP 2.719
Web of Science (2013): Impact factor 3.361
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.97 SJR 1.787 SNIP 2.699
Web of Science (2012): Impact factor 2.989
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Floating vertical axis wind turbine, Straight blades, Number of blades, Aero-hydro-servo-elastic, Dynamic response

Scopus rating (2011): CiteScore 3.9 SJR 1.634 SNIP 2.349
Web of Science (2011): Impact factor 2.978
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.459 SNIP 2.215
Web of Science (2010): Impact factor 2.58
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.272 SNIP 1.963
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.436 SNIP 1.891
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.194 SNIP 1.63
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.112 SNIP 1.469
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.177 SNIP 1.271
Scopus rating (2004): SJR 0.761 SNIP 1.14
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.932 SNIP 0.926
Scopus rating (2002): SJR 0.417 SNIP 0.526
Scopus rating (2001): SJR 0.57 SNIP 0.482
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.326 SNIP 0.716
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.278 SNIP 0.62
Original language: English
Keywords: Floating vertical axis wind turbine, Straight blades, Number of blades, Aero-hydro-servo-elastic, Dynamic response
DOIs:
10.1016/j.renene.2016.09.074
Source: FindIt
Source-ID: 2348811983
Research output: Research - peer-review; Journal article – Annual report year: 2017