Effect of sodium bicarbonate and varying concentrations of sodium chloride in brine on the liquid retention of fish (Pollachius virens L.) muscle - DTU Orbit (02/04/2018)

Effect of sodium bicarbonate and varying concentrations of sodium chloride in brine on the liquid retention of fish (Pollachius virens L.) muscle: High quality low salt saithe muscle

BACKGROUND Negative health effects associated with excessive sodium (Na) intake have increased the demand for tasty low-Na products (<2% NaCl) rather than traditional heavily salted fish products (∼20% NaCl). This study investigates the causes of improved yield and liquid retention of fish muscle brined with a combination of salt (NaCl) and sodium bicarbonate (NaHCO3).

RESULTS Water characteristics and microstructure of saithe (Pollachius virens L.) muscle brined in solutions of NaCl and NaHCO3 or NaCl alone were compared using low-field nuclear magnetic resonance (LF-NMR) T2 relaxometry, microscopy, salt content, liquid retention and colorimetric measurements. Saithe muscle was brined for 92 h in 0, 30, 60, 120 or 240 g kg⁻¹ NaCl or the respective solutions with added 7.5 g kg⁻¹ NaHCO3. NaHCO3 inclusion improved the yield in solutions ranging from 0 to 120 g kg⁻¹ NaCl, with the most pronounced effect being observed at 30 g kg⁻¹ NaCl. The changes in yield were reflected in water mobility, with significantly shorter T2 relaxation times in all corresponding brine concentrations. Salt-dependent microstructural changes were revealed by light microscopy, where NaHCO3 supplementation resulted in greater intracellular space at 30 and 60 g kg⁻¹ NaCl. **CONCLUSION** Sodium bicarbonate addition to low-salt solutions can improve yield and flesh quality of fish muscle owing to altered water mobility and wider space between the muscle cells.
Scopus rating (2010): SJR 0.775 SNIP 0.894
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.86 SNIP 1.054
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.751 SNIP 0.838
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.732 SNIP 1.14
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.704 SNIP 0.963
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.565 SNIP 0.89
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.621 SNIP 0.914
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.797 SNIP 1.142
Scopus rating (2002): SJR 0.864 SNIP 1.166
Scopus rating (2001): SJR 0.795 SNIP 0.976
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.61 SNIP 1.063
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.841 SNIP 1.335
Original language: English
DOIs: 10.1002/jsfa.7213
Source: FindIt
Source-ID: 2264733687
Publication: Research - peer-review › Journal article – Annual report year: 2015