Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

Protective action of dense and porous spinel coatings on Crofer 22 APU was compared.

Reduction and re-oxidation produces denser coatings than heat treating in air only.

Coating density has minor influence on oxidation resistance at 800 °C in air.

Dense coating resulted in three times lower Cr evaporation rate than porous coating.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Mixed Conductors, Chalmers University of Technology, Norwegian University of Science and Technology
Pages: 57-67
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Power Sources
Volume: 354
ISSN (Print): 0378-7753
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 7 SJR 2.202 SNIP 1.536
Web of Science (2017): Impact factor 6.945
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 6.22 SJR 1.944 SNIP 1.5
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 6.34 SJR 1.9 SNIP 1.667
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 6.3 SJR 1.964 SNIP 2.042
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 5.63 SJR 1.975 SNIP 2.137
Web of Science (2013): Impact factor 5.211
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.04 SJR 2.282 SNIP 2.006
Web of Science (2012): Impact factor 4.675
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 5.13 SJR 2.227 SNIP 2.172
Web of Science (2011): Impact factor 4.951
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes