Effect of ammonia addition on microstructure and wear performance of carbonitrided high carbon bearing steel AISI 52100

The investigation on the microstructure and tribomechanical behavior of hypereutectoid bearing steel AISI 52100 has been carried out during an unconventional thermo-chemical process aiming to improve the wear performance under dry conditions. The effects of NH₃ addition rate on microstructure, hardness and wear performance of the carbonitrided specimen were characterized and the results show that two types of nitride (CrN, (Cr,Fe)₂N₁₋ₓ) are formed in the surface layer. The quantity of the nitride and carbide precipitates increase firstly and decrease subsequently with the increasing of NH₃ addition rate, whereas the fraction of retained austenite increases monotonically. The wear performance of the carbonitrided specimen is improved during the entire stage of the sliding test with the NH₃ addition rate below 0.4l/min, but it decreases sharply at the initial stage of sliding test and then increases gradually when further raising the NH₃ addition rate. The possible reasons underlying have been discussed and are attributed to the fraction of retained austenite formed during carbonitriding process and the transformation from retained austenite into martensite during sliding test, respectively.

General information
State: Published
Organisations: Department of Mechanical Engineering, Materials and Surface Engineering, Shanghai Jiao Tong University
Contributors: Liu, B., Wang, B., Gu, J.
Pages: 112-118
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Surface and Coatings Technology
Volume: 361
ISSN (Print): 0257-8972
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.08 SJR 0.928 SNIP 1.545
Web of Science (2017): Impact factor 2.906
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.56 SJR 0.882 SNIP 1.379
Web of Science (2016): Impact factor 2.589
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.46 SJR 0.852 SNIP 1.37
Web of Science (2015): Impact factor 2.139
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.44 SJR 0.983 SNIP 1.652
Web of Science (2014): Impact factor 1.998
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.58 SJR 1.048 SNIP 1.832
Web of Science (2013): Impact factor 2.199
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.2 SJR 1.041 SNIP 1.641
Web of Science (2012): Impact factor 1.941
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes