Edge-Matching Problems with Rotations

Publication: Research - peer-reviewArticle in proceedings – Annual report year: 2011

View graph of relations

Edge-matching problems, also called puzzles, are abstractions of placement problems with neighborhood conditions. Pieces with colored edges have to be placed on a board such that adjacent edges have the same color. The problem has gained interest recently with the (now terminated) Eternity II puzzle, and new complexity results. In this paper we consider a number of settings which differ in size of the puzzles and the manipulations allowed on the pieces. We investigate the effect of allowing rotations of the pieces on the complexity of the problem, an aspect that is only marginally treated so far. We show that some problems have polynomial time algorithms while others are NP-complete. Especially we show that allowing rotations in one-row puzzles makes the problem NP-hard. We moreover show that many commonly considered puzzles can be emulated by simple puzzles with quadratic pieces, so that one can restrict oneself to investigating those.
Original languageEnglish
Title of host publicationFundamentals of Computation Theory : 18th International Symposium, FCT 2011 Oslo, Norway, August 22-25, 2011 Proceedings
PublisherSpringer
Publication date2011
Pages114-125
ISBN (print)978-3-642-22952-7
ISBN (electronic)978-3-642-22953-4
DOIs
StatePublished

Conference

ConferenceInternational Symposium on Fundamentals of Computation Theory
Number18
CityOslo, Norway
Period01/01/11 → …
NameLecture Notes in Computer Science
Number6914
ISSN (Print)0302-9743
CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5787837