Economies of scale in biogas production and the significance of flexible regulation - DTU Orbit (22/12/2018)

Economies of scale in biogas production and the significance of flexible regulation

Biogas production is characterised by economies of scale in capital and operational costs of the plant and diseconomies of scale from transport of input materials. We analyse biogas in a Danish setting where most biogas is based on manure, we use a case study with actual distances, and find that the benefits of scale in capital and operational costs dominate the diseconomies of increasing transport distances to collect manure. To boost the yield it is common to use co-substrates in the biogas production. We investigate how costs and income changes, when sugar beet is added in this case study, and demonstrate that transport cost can be critical in relation to co-substrates. Further we compare the new Danish support for upgraded biogas with the traditional support for biogas being used in Combined Heat and Power production in relation to scale economies. We argue that economies of scale is facilitated by the new regulation providing similar support to upgraded biogas fed into the natural gas grid, however in order to keep transport costs low, we suggest that the biogas plants should be allowed to use and combine as many co-substrates as possible, respecting the sustainability criteria regarding energy crops in Danish legislation.

General information
State: Published
Organisations: Department of Management Engineering, Systems Analysis
Contributors: Nielsen, L. S., Klinge Jacobsen, H.
Pages: 77-89
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Energy Policy
Volume: 101
ISSN (Print): 0301-4215
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.97 SJR 1.994 SNIP 2.094
Web of Science (2017): Impact factor 4.039
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.49 SJR 2.197 SNIP 1.985
Web of Science (2016): Impact factor 4.14
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.98 SJR 2.287 SNIP 1.762
Web of Science (2015): Impact factor 3.045
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.62 SJR 2.143 SNIP 1.892
Web of Science (2014): Impact factor 2.575
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.74 SJR 1.891 SNIP 2.168
Web of Science (2013): Impact factor 2.696
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.52 SJR 1.75 SNIP 2.042
Web of Science (2012): Impact factor 2.743
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.35 SJR 1.578 SNIP 1.934
Web of Science (2011): Impact factor 2.723