Economic and Environmental Impact Trade-Offs Related to In-Water Hull Cleanings of Merchant Vessels - DTU Orbit (28/12/2018)

Economic and Environmental Impact Trade-Offs Related to In-Water Hull Cleanings of Merchant Vessels

Merchant vessels are equipped with antifouling systems to prevent accumulation of marine organisms on the hull—a phenomenon known as fouling. In many cases, however, fouling accumulates and in-water hull cleaning is required. Hull cleanings are part of a hull management scheme, and although they are an established practice, their associated environmental and economic trade-offs and conflicts have remained largely unexplored. The purpose of this article is to quantitatively assess both economic and environmental impacts of hull management schemes on the operation of tanker vessels. After identifying induced and avoided costs and environmental impacts from the hull management system, we used both temporally and spatially distributed models to capture the degradation of the antifouling system as well as the global sailing profile of the vessels. Last, we analyzed how each of the modeled impacts varied with the frequency of hull cleanings within the hull management scheme. Our analysis revealed a convex relationship between the frequency of hull cleanings and fuel savings. The higher the frequency of hull cleanings, the less fuel savings can be achieved per cleaning. In terms of costs, from some point on the costs of the service are likely to offset the savings—especially if fuel prices are low. In regards to climate change, avoided emissions due to fuel savings are likely to outweigh the limited impacts from the service itself. Last, while ecosystem impacts from marine, terrestrial, and freshwater eco-toxicity are likely to increase from hull cleanings, they are subject to high uncertainties.

General information
State: Published
Organisations: Department of Mechanical Engineering, Engineering Design and Product Development, Department of Management Engineering, Quantitative Sustainability Assessment
Contributors: Pagoropoulos, A., Kjær, L. L., Dong, Y., Birkved, M., McAloone, T. C.
Pages: 916-929
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Industrial Ecology
Volume: 22
Issue number: 4
ISSN (Print): 1088-1980
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.93 SJR 1.237 SNIP 1.439
Web of Science (2017): Impact factor 4.356
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.14 SJR 1.303 SNIP 1.373
Web of Science (2016): Impact factor 4.123
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.82 SJR 1.455 SNIP 1.714
Web of Science (2015): Impact factor 3.265
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.07 SJR 1.607 SNIP 1.711
Web of Science (2014): Impact factor 3.227
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.47 SJR 1.156 SNIP 1.405
Web of Science (2013): Impact factor 2.713
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.24 SJR 1.023 SNIP 1.536
Web of Science (2012): Impact factor 2.276
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.13 SJR 1.042 SNIP 1.262
Web of Science (2011): Impact factor 2.085
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 0.897 SNIP 1.364
Web of Science (2010): Impact factor 2.446
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.21 SNIP 1.397
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.265 SNIP 1.647
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.229 SNIP 1.745
Scopus rating (2006): SJR 1.045 SNIP 1.575
Scopus rating (2005): SJR 0.623 SNIP 1.692
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.159 SNIP 1.982
Scopus rating (2003): SJR 0.637 SNIP 1.067
Scopus rating (2002): SJR 0.499 SNIP 1.14
Scopus rating (2001): SJR 0.737 SNIP 1.567
Scopus rating (2000): SJR 0.469 SNIP 1.526
Scopus rating (1999): SJR 0.679 SNIP 1.518
Original language: English
Keywords: Antifouling systems, Fuel efficiency, Industrial ecology, Life cycle management, Product-service systems, Shipping
Electronic versions:
DOIs:
10.1111/jiec.12627
Research output: Research - peer-review. Journal article – Annual report year: 2018