EasyClone-MarkerFree - DTU Orbit (06/05/2018)

EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into *Saccharomyces cerevisiae* via CRISPR-Cas9

Saccharomyces cerevisiae is an established industrial host for production of recombinant proteins, fuels and chemicals. To enable stable integration of multiple marker-free overexpression cassettes in the genome of *S. cerevisiae*, we have developed a vector toolkit EasyClone-MarkerFree. The integration of linearized expression cassettes into defined genomic loci is facilitated by CRISPR/Cas9. Cas9 is recruited to the chromosomal location by specific guide RNAs (gRNAs) expressed from a set of gRNA helper vectors. Using our genome engineering vector suite, single and triple insertions are obtained with 90–100% and 60–70% targeting efficiency, respectively. We demonstrate application of the vector toolkit by constructing a haploid laboratory strain (CEN.PK113-7D) and a diploid industrial strain (Ethanol Red) for production of 3-hydroxypropionic acid, where we tested three different acetyl-CoA supply strategies, requiring overexpression of three to six genes each. Among the tested strategies was a bacterial cytosolic pyruvate dehydrogenase complex, which was integrated into the genome in a single transformation. The publicly available EasyClone-MarkerFree vector suite allows for facile and highly standardized genome engineering, and should be of particular interest to researchers working on yeast chassis with limited markers available.

General information

State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Yeast Metabolic Engineering, Synthetic Biology Tools for Yeast, Research Groups, Applied Metabolic Engineering, Chalmers University of Technology
Number of pages: 11
Pages: 1110-1117
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information

Journal: Biotechnology Journal
Volume: 11
Issue number: 8
ISSN (Print): 1860-6768
Ratings:
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 3.2 SJR 1.29 SNIP 0.969
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 1
- Scopus rating (2015): SJR 1.172 SNIP 0.874 CiteScore 2.91
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): SJR 1.189 SNIP 1.062 CiteScore 2.98
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): SJR 1.136 SNIP 1.093 CiteScore 3.01
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): SJR 0.944 SNIP 0.957 CiteScore 2.4
- ISI indexed (2012): ISI indexed no
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 1
- Scopus rating (2011): SJR 0.785 SNIP 0.726 CiteScore 1.94
- ISI indexed (2011): ISI indexed no
- Web of Science (2011): Indexed yes
- BFI (2010): BFI-level 1
- Scopus rating (2010): SJR 0.787 SNIP 0.798