EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae

Development of strains for efficient production of chemicals and pharmaceuticals requires multiple rounds of genetic engineering. In this study, we describe construction and characterization of EasyClone vector set for baker's yeast Saccharomyces cerevisiae, which enables simultaneous expression of multiple genes with an option of recycling selection markers. The vectors combine the advantage of efficient uracil excision reaction-based cloning and Cre-LoxP-mediated marker recycling system. The episomal and integrative vector sets were tested by inserting genes encoding cyan, yellow, and red fluorescent proteins into separate vectors and analyzing for co-expression of proteins by flow cytometry. Cells expressing genes encoding for the three fluorescent proteins from three integrations exhibited a much higher level of simultaneous expression than cells producing fluorescent proteins encoded on episomal plasmids, where correspondingly 95% and 6% of the cells were within a fluorescence interval of \(\text{Log}_{10} \) mean ± 15% for all three colors. We demonstrate that selective markers can be simultaneously removed using Cre-mediated recombination and all the integrated heterologous genes remain in the chromosome and show unchanged expression levels. Hence, this system is suitable for metabolic engineering in yeast where multiple rounds of gene introduction and marker recycling can be carried out.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, CFB - Core Flow, Department of Systems Biology, Eucaryotic Molecular Cell Biology, Bacterial Cell Factories, Research Groups, Fungal Cell Factories, Chalmers University of Technology
Pages: 238–248
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: F E M S Yeast Research
Volume: 14
Issue number: 2
ISSN (Print): 1567-1356
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.91 SJR 1.308 SNIP 0.787
Web of Science (2017): Impact factor 2.609
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.51 SJR 1.254 SNIP 0.855
Web of Science (2016): Impact factor 3.299
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.56 SJR 1.196 SNIP 0.741
Web of Science (2015): Impact factor 2.479
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.37 SJR 1.076 SNIP 0.831
Web of Science (2014): Impact factor 2.818
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.5 SJR 1.248 SNIP 0.863
Web of Science (2013): Impact factor 2.436
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.56 SJR 1.192 SNIP 0.841
Web of Science (2012): Impact factor 2.462
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.54 SJR 1.221 SNIP 1.018
Web of Science (2011): Impact factor 2.403
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.043 SNIP 0.92
Web of Science (2010): Impact factor 2.279
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.977 SNIP 0.814
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.456 SNIP 1.02
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.231 SNIP 1.075
Scopus rating (2006): SJR 1.061 SNIP 1.084
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.208 SNIP 1.079
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.116 SNIP 1.205
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.664 SNIP 0.793
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.438 SNIP 0.396
Web of Science (2002): Indexed yes
Web of Science (2001): Indexed yes
Original language: English
Keywords: Genome editing, Saccharomyces cerevisiae, Metabolic engineering, Integrative vectors, USER cloning
Electronic versions:
fyr12118.pdf
DOIs:
10.1111/1567-1364.12118

Bibliographical note
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Research output: Research - peer-review | Journal article – Annual report year: 2013