Dynamic performance and stress analysis of the steam generator of parabolic trough solar power plants

The thermal stress on thick-walled components, such as tubesheets and steam drums, limits both the temperature ramp-up rates and the temperature differences between outer and inner walls. The cyclic operation of concentrating solar power plants may lead to fatigue damage. For these reasons, a stress analysis of the steam generator is required to assure its lifetime. A methodology is presented for the thermo-mechanical analysis of the steam generator for a parabolic trough power plant. This methodology consists of coupling transient thermodynamic and stress models of the heat exchangers in order to calculate the stress. Besides the heat exchanger models, a transient model for a TEMA H heat exchanger is proposed. Finite element simulations are carried out to calculate the deviations of the simplified analytical models. In this way, a powerful tool that allows the analysis and optimization of the steam generator operation is proposed. The results suggest that U-tube tubesheets are exposed to high thermal stresses on the no-tube-lane zone, especially in the reheater. The steam generator start-up can be accomplished in around 45 minutes using 36.4 MWhth. Furthermore, the TEMA X evaporator presents a thermal stress reduction of 35% compared to the kettle evaporator.

General information
State: Published
Organisations: Department of Mechanical Engineering, Thermal Energy, Carlos III University of Madrid
Pages: 804-818
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Applied Thermal Engineering
Volume: 147
ISSN (Print): 1359-4311
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.14 SJR 1.505 SNIP 1.837
Web of Science (2017): Impact factor 3.771
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.78 SJR 1.438 SNIP 1.851
Web of Science (2016): Impact factor 3.444
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.32 SJR 1.683 SNIP 1.884
Web of Science (2015): Impact factor 3.043
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.16 SJR 1.539 SNIP 2.187
Web of Science (2014): Impact factor 2.739
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.31 SJR 1.466 SNIP 2.469
Web of Science (2013): Impact factor 2.624
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.7 SJR 1.492 SNIP 2.422
Web of Science (2012): Impact factor 2.127
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes