Dynamic modeling of presence of occupants using inhomogeneous Markov chains

Dynamic modeling of presence of occupants using inhomogeneous Markov chains

Occupancy modeling is a necessary step towards reliable simulation of energy consumption in buildings. This paper outlines a method for fitting recordings of presence of occupants and simulation of single-person to multiple-persons office environments. The method includes modeling of dependence on time of day, and by use of a filter of the observations it is able to capture per-employee sequence dynamics. Simulations using this method are compared with simulations using homogeneous Markov chains and show far better ability to reproduce key properties of the data. The method is based on inhomogeneous Markov chains with where the transition probabilities are estimated using generalized linear models with polynomials, B-splines, and a filter of passed observations as inputs. For treating the dispersion of the data series, a hierarchical model structure is used where one model is for low presence rate, and another is for high presence rate.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Dynamical Systems, Department of Civil Engineering, Section for Building Physics and Services, Danish Building Research Institute
Contributors: Andersen, P. H. D., Iversen, A., Madsen, H., Rode, C.
Pages: 213-223
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Energy and Buildings
Volume: 69
ISSN (Print): 0378-7788
Ratings:
 BFI (2019): BFI-level 2
 Web of Science (2019): Indexed yes
 BFI (2018): BFI-level 2
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 2
 Scopus rating (2017): CiteScore 4.96 SJR 2.061 SNIP 2.12
 Web of Science (2017): Impact factor 4.457
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 2
 Scopus rating (2016): CiteScore 4.64 SJR 2.055 SNIP 1.968
 Web of Science (2016): Impact factor 4.067
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 2
 Scopus rating (2015): CiteScore 4.07 SJR 2.04 SNIP 2.146
 Web of Science (2015): Impact factor 2.973
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 2
 Scopus rating (2014): CiteScore 4.21 SJR 2.079 SNIP 2.875
 Web of Science (2014): Impact factor 2.884
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 2
 Scopus rating (2013): CiteScore 3.79 SJR 1.852 SNIP 2.404
 Web of Science (2013): Impact factor 2.465
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 2
 Scopus rating (2012): CiteScore 3.36 SJR 1.745 SNIP 2.696
 Web of Science (2012): Impact factor 2.679
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes
 BFI (2011): BFI-level 2