Dynamic influent pollutant disturbance scenario generation using a phenomenological modelling approach

Publication: Research - peer-reviewJournal article – Annual report year: 2011

View graph of relations

Activated Sludge Models are widely used for simulation-based evaluation of wastewater treatment plant (WWTP) performance. However, due to the high workload and cost of a measuring campaign on a full-scale WWTP, many simulation studies suffer from lack of sufficiently long influent flow rate and concentration time series representing realistic wastewater influent dynamics. In this paper, a simple phenomenological modelling approach is proposed as an alternative to generate dynamic influent pollutant disturbance scenarios. The presented set of models is constructed following the principles of parsimony (limiting the number of parameters as much as possible), transparency (using parameters with physical meaning where possible) and flexibility (easily extendable to other applications where long dynamic influent time series are needed). The proposed approach is sub-divided in four main model blocks: 1) model block for flow rate generation, 2) model block for pollutants generation (carbon, nitrogen and phosphorus), 3) model block for temperature generation and 4) model block for transport of water and pollutants. The paper is illustrated with the results obtained during the development of the dynamic influent of the Benchmark Simulation Model no. 2 (BSM2). The series of simulations show that it is possible to generate a dry weather influent describing diurnal flow rate dynamics (low rate at night, high rate during day time), weekend effects (with different flow rate during weekends, compared to weekdays), holiday effects (where the wastewater production is assumed to be different for a number of weeks) and seasonal effects (with variations in the infiltration and thus also the flow rate to the WWTP). In addition, the dry weather model can be extended with a rain and storm weather generator, where the proposed phenomenological model can also mimic the “first flush” effect from the sewer network and the influent dilution phenomena that are typically observed at full-scale WWTPs following a rain event. Finally, the extension of the sewer system can be incorporated in the influent dynamics as well: the larger the simulated sewer network, the smoother the simulated diurnal flow rate and concentration variations. In the discussion, it is pointed out how the proposed phenomenological models can be expanded to other applications, for example to represent heavy metal or organic micro-pollutant loads entering the treatment plant.
Original languageEnglish
JournalEnvironmental Modelling & Software
Publication date2011
Volume26
Issue11
Pages1255-1267
ISSN1364-8152
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 23

Keywords

  • Dynamic disturbances, BSM2, Wastewater treatment plant, Urban drainage, Influent modelling
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5650087