Dynamic dilution exponent in monodisperse entangled polymer solutions - DTU Orbit

Dynamic dilution exponent in monodisperse entangled polymer solutions

We study and model the linear viscoelastic properties of several entangled semi-dilute and concentrated solutions of linear chains of different molar masses and at different concentrations dissolved in their oligomers. We discuss the dilution effect of the oligomers on the entangled long chains. In particular, we investigate the influence of both concentration and molar mass on the value of the effective dynamic dilution exponent determined from the level of the storage plateau at low and intermediate frequencies. We show that the experimental results can be quantitatively explained by considering the tension re-equilibration process along the chains, in agreement with van Ruymbeke et al. (Macromol., 2014), i.e. by considering that the real dilution exponent α is always equal to 1, while larger values of the dilution exponent ($1 < \alpha < 1.3$) found experimentally are attributed to the enhanced relaxation of the long chain extremities. Then we discuss the influence of the polymer concentration on the terminal relaxation time of the solutions and how this can be modelled by the enhanced contour length fluctuation process (CR-CLF). We point out that this larger dilution effect is not only a function of concentration but also depends on the molar mass of the chains. While the proposed approach successfully explains the viscoelastic properties of a large number of semi-dilute solutions of polymers in their own oligomers, important discrepancies are found for semi-dilute entangled polymers in small-molecule theta or good solvents. Possible explanations for the differences between these sample sets are proposed, based on the comparison of their viscoelastic behavior.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, The Danish Polymer Centre, KU Leuven, DSM Research Geleen, Université Catholique de Louvain
Authors: Shahid, T. (Ekstern), Huang, Q. (Intern), Oosterlinck, F. (Ekstern), Clasen, C. (Ekstern), van Ruymbeke, E. (Ekstern)
Number of pages: 14
Pages: 269-282
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Soft Matter
Volume: 13
ISSN (Print): 1744-683x
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): SNIP 1.227 SJR 1.493 CiteScore 3.81
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.7 SJR 1.657 SNIP 1.173
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.634 SNIP 1.271 CiteScore 3.97
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.742 SNIP 1.243 CiteScore 4.11
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.748 SNIP 1.2 CiteScore 4.2
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.901 SNIP 1.144 CiteScore 3.96
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 2.007 SNIP 1.307 CiteScore 4.56
ISI indexed (2011): ISI indexed yes