Durable and Robust Solid Oxide Fuel Cells

The solid oxide fuel cell (SOFC) is an attractive technology for the generation of electricity with high efficiency and low emissions. Risø DTU (now DTU Energy Conversion) works closely together with Topsoe Fuel Cell A/S in their effort to bring competitive SOFC systems to the market. This 2-year project had as one of its' overarching goals to improve durability and robustness of the Danish solid oxide fuel cells. The project focus was on cells and cell components suitable for SOFC operation in the temperature range 600 – 750 °C. The cells developed and/or studied in this project are intended for use within the CHP (Combined Heat and Power) market segment with stationary power plants in the range 1 – 250 kWe in mind. Lowered operation temperature is considered a good way to improve the stack durability since corrosion of the interconnect plates in a stack is lifetime limiting at T > 750 °C. The fact that degradation and robustness is not very well explored or understood at operating temperatures below 750 °C, provides motivation for focussing on materials and cells suitable for, and operated in this temperature range.

A significant part of this project was concerned with improved understanding of degradation and failure mechanisms. Improved understanding of performance and lifetime limiting factors will make it possible to develop strategies for counteracting degradation and improving the power density of SOFC based systems, both necessary to advance towards the goals set out in the national plan for SOFC implementation.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Applied Electrochemistry, Mixed Conductors, Fundamental Electrochemistry, Atomic Scale Materials Modelling, Imaging and Structural Analysis, Ceramic Engineering & Science
Number of pages: 53
Publication date: 2012

Publication information
Publisher: energinet.dk
Original language: English
Electronic versions:
Durable_and_Robust_Solid_Oxide_Fuel_Cells.pdf

Bibliographical note
Energinet.dk project no. 2010-1-10441
Research output: Research › Report – Annual report year: 2013