Durability testing of photoelectrochemical hydrogen production under day/night light cycled conditions - DTU Orbit (14/03/2019)

This work investigates long-term photoelectrochemical hydrogen evolution (82 days) in 1M HClO4 using a TiO2:H protected crystalline Si-based photocathode with metal-oxide-semiconductor (MOS) junctions. It is shown that day/night cycling leads to relatively rapid performance degradation while photocurrent under the continuous light condition is relatively stable. We observed that the performance loss is mainly due to contamination of catalytic surface with carbonaceous material. By ultraviolet (UV) light exposure, we also observed that the activity can be restored likely owing to the photocatalytic degradation of organics on the TiO2 protection layer.

General information
State: Published
Organisations: Department of Physics, Experimental Surface and Nanomaterials Physics, Department of Micro- and Nanotechnology, Silicon Microtechnology
Contributors: Bae, D., Seger, B., Vesborg, P. C. K., Hansen, O., Chorkendorff, I.
Number of pages: 4
Pages: 106-109
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: ChemElectroChem
Volume: 6
Issue number: 1
ISSN (Print): 2196-0216
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.94 SJR 1.474 SNIP 0.727
Web of Science (2017): Impact factor 4.446
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.77 SJR 1.501 SNIP 0.818
Web of Science (2016): Impact factor 4.136
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.13 SJR 1.178 SNIP 0.648
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Web of Science (2014): Impact factor
BFI (2013): BFI-level 1
ISI indexed (2013): ISI indexed no
Original language: English
Keywords: Energy conversion, Hydrogen evolution reaction, PECs, Titanium oxide, Water splitting
DOIs:
10.1002/celc.201800918
Source: FindIt
Source-ID: 2438647036
Research output: Research - peer-review » Journal article – Annual report year: 2019