Durability testing of photoelectrochemical hydrogen production under day/night light cycled conditions - DTU Orbit (12/05/2019)

This work investigates long-term photoelectrochemical hydrogen evolution (82 days) in 1M HClO4 using a TiO2:H protected crystalline Si-based photocathode with metal-oxide-semiconductor (MOS) junctions. It is shown that day/night cycling leads to relatively rapid performance degradation while photocurrent under the continuous light condition is relatively stable. We observed that the performance loss is mainly due to contamination of catalytic surface with carbonaceous material. By ultraviolet (UV) light exposure, we also observed that the activity can be restored likely owing to the photocatalytic degradation of organics on the TiO2 protection layer.

General information
Publication status: Published
Organisations: Department of Physics, Experimental Surface and Nanomaterials Physics, Nanofabrication, Silicon Microtechnology, National Centre for Nano Fabrication and Characterization
Corresponding author: Chorkendorff, I.
Contributors: Bae, D., Seger, B., Vesborg, P. C. K., Hansen, O., Chorkendorff, I.
Number of pages: 4
Pages: 106-109
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: ChemElectroChem
Volume: 6
Issue number: 1
ISSN (Print): 2196-0216
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Original language: English
Keywords: Energy conversion, Hydrogen evolution reaction, PECs, Titanium oxide, Water splitting
DOIs:
10.1002/celc.201800918
Source: FindIt
Source-ID: 2438647036
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review