Drug-Driven Phenotypic Convergence Supports Rational Treatment Strategies of Chronic Infections

Drug-Driven Phenotypic Convergence Supports Rational Treatment Strategies of Chronic Infections
Chronic *Pseudomonas aeruginosa* infections evade antibiotic therapy and are associated with mortality in cystic fibrosis (CF) patients. We find that *in vitro* resistance evolution of *P. aeruginosa* toward clinically relevant antibiotics leads to phenotypic convergence toward distinct states. These states are associated with collateral sensitivity toward several antibiotic classes and encoded by mutations in antibiotic resistance genes, including transcriptional regulator *nfxB*. Longitudinal analysis of isolates from CF patients reveals similar and defined phenotypic states, which are associated with extinction of specific sub-lineages in patients. In-depth investigation of chronic *P. aeruginosa* populations in a CF patient during antibiotic therapy revealed dramatic genotypic and phenotypic convergence. Notably, fluoroquinolone-resistant subpopulations harboring *nfxB* mutations were eradicated by antibiotic therapy as predicted by our *in vitro* data. This study supports the hypothesis that antibiotic treatment of chronic infections can be optimized by targeting phenotypic states associated with specific mutations to improve treatment success in chronic infections.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Research Groups, Bacterial Synthetic Biology, Department of Systems Biology, Department of Biotechnology and Biomedicine, Office for Study Programmes and Student Affairs, CHO Core, iLoop, Infection Microbiology, Copenhagen University Hospital
Pages: 121-134
Publication date: 2018
Main Research Area: Technical/natural sciences

Publication information
Journal: Cell
Volume: 172
Issue number: 1-2
ISSN (Print): 0092-8674
Ratings:
BFI (2018): BFI-level 3
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 21.99 SJR 25.137 SNIP 5.008
Web of Science (2017): Impact factor 31.398
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 22.79 SJR 27.691 SNIP 4.946
Web of Science (2016): Impact factor 30.41
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 27.712 SNIP 5.294 CiteScore 23.62
Web of Science (2015): Impact factor 28.71
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 28.505 SNIP 5.66 CiteScore 24.91
Web of Science (2014): Impact factor 32.242
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 28.254 SNIP 5.889 CiteScore 24.88
Web of Science (2013): Impact factor 33.116
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Web of Science (2012): Impact factor 31.957
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes