Droplet-based microfluidics as a future tool for strain improvement in lactic acid bacteria - DTU Orbit (18/03/2019)

Droplet-based microfluidics as a future tool for strain improvement in lactic acid bacteria

Strain development is frequently used to improve the performance and functionality of industrially important microbes. As traditional mutagenesis screen is especially utilized by the food industry to improve strains used in food fermentation, high-throughput and cost-effective screening tools are important in mutant selection. The emerging droplet-based microfluidics technology miniaturizes the volume for cell cultivation and phenotype interrogation down to the pico-liter scales, which facilitates screening of microbes for improved phenotypical properties tremendously. In this mini-review, we present recent application of the droplet-based microfluidics in microbial strain improvement with a focus on its potential use in the screening of lactic acid bacteria.

General information
State: Published
Organisations: Research group for Microbial Biotechnology and Biorefining, National Food Institute, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Fluidic Array Systems and Technology, Department of Micro- and Nanotechnology, Technical University of Denmark
Contributors: Chen, J., Vestergaard, M., Shen, J., Solem, C., Dufva, M., Jensen, P. R.
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: FEMS MICROBIOLOGY LETTERS
Volume: 23
Issue number: 1
Article number: fny258
ISSN (Print): 0378-1097
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.8 SJR 0.79 SNIP 0.58
Web of Science (2017): Impact factor 11.392
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.76 SJR 0.842 SNIP 0.615
Web of Science (2016): Impact factor 12.198
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.08 SJR 1.156 SNIP 0.756
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.17 SJR 1.136 SNIP 0.767
Web of Science (2014): Impact factor 13.244
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.25 SJR 1.053 SNIP 0.719
Web of Science (2013): Impact factor 13.806
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.25 SJR 1.073 SNIP 0.804
Web of Science (2012): Impact factor 13.231
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1