Drag reduction in silica nanochannels induced by graphitic wall coatings

Research output: Research - peer-reviewConference abstract for conference – Annual report year: 2017


View graph of relations

Transport of water in hydrophilic nanopores is of significant technological and scientific interest. Water flow through hydrophilic nanochannelsis known to experience enormous hydraulic resistance. Therefore, drag reduction is essential for the development of highly efficient nanofluidic devices. In this work, we propose the use of graphitic materials as wall coatings in hydrophilic silica nanopores. Specifically, by conducting atomistic simulations, we investigate the flow inside slit and cylindrical silica channels with walls coated with graphene (GE) layers and carbonnanotubes (CNTs), respectively. We develop realistic force fields to simulate the systems of interest and systematically, compare flow rates in coated and uncoated nanochannels under different pressure gradients. Moreover, we assess the effect that GE and CNT translucencies to wettability have on water hydrodynamics in the nanochannels. The influence of channel size is investigated by systematically varying channel heights and nanopore diameters. In particular, we present the computed water density and velocity profiles, volumetric flow rates, slip lengths and flow enhancements, to clearly demonstrate the drag reduction capabilities of graphitic wall coatings.
Original languageEnglish
Publication date2017
Number of pages1
StatePublished - 2017
Event70th Annual Meeting of the American Physical Society Division of Fluid Dynamics (DFD17) - Denver, United States
Duration: 19 Nov 201721 Nov 2017


Conference70th Annual Meeting of the American Physical Society Division of Fluid Dynamics (DFD17)
CountryUnited States
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

Download statistics

No data available

ID: 139802876