Downstream effects from contemporary wind turbine deployments

Research output: Research - peer-reviewJournal article – Annual report year: 2018

Documents

DOI

View graph of relations

High-resolution regional simulations of the downstream effects of wind turbine arrays are presented. The simulations are conducted with the Weather Research and Forecasting (WRF) model using two different wind turbine parameterizations for a domain centered on the highest density of current wind turbine deployments in the contiguous US. The simulations use actual wind turbine geolocations and turbine specifications (e.g. power and thrust curves). Resulting analyses indicate that for both WT parameterizations impacts on temperature, specific humidity, precipitation, sensible and latent heat fluxes from current wind turbine deployments are statistically significant only in summer, are of very small magnitude, and are highly localized. It is also shown that use of the relatively recently developed new explicit wake parameterization (EWP) results in faster recovery of full array wakes. This in turn leads to smaller climate impacts and reduced array-array interactions, which at a system-wide scale lead to higher summertime capacity factors (2-6% higher) than those from the more commonly applied ‘Fitch’ parameterization. Our research implies that further expansion of wind turbine deployments can likely be realized without causing substantial downstream impacts on weather and climate, or array-array interactions of a magnitude that would yield substantial decreases in capacity factors.
Original languageEnglish
Article number072010
Book seriesJournal of Physics: Conference Series
Volume1037
Issue number7
Number of pages1
ISSN1742-6596
DOIs
StatePublished - 2018
EventThe Science of Making Torque from Wind 2018 - Politecnico di Milano (POLIMI), Milan, Italy
Duration: 20 Jun 201822 Jun 2018
Conference number: 7
http://www.torque2018.org/

Conference

ConferenceThe Science of Making Torque from Wind 2018
Number7
LocationPolitecnico di Milano (POLIMI)
CountryItaly
CityMilan
Period20/06/201822/06/2018
Internet address

Bibliographical note

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 149582530