Double thermal oxidation scheme for the fabrication of SiO2 nanochannels - DTU Orbit (25/12/2018)

Double thermal oxidation scheme for the fabrication of SiO2 nanochannels

We present a planar fabrication scheme for fluidic systems with silicon dioxide nanochannels and assess the wafer scale quality and homogeneity of the fabricated devices. The nanochannels have heights h ranging from 14 to 300 nm and widths w of 2.5, 5 and 10 μm. Compared to other state-of-the-art fabrication techniques, our double thermal oxidation scheme (DTOS) displays improvements with respect to 4 inch wafer scale height variation $\sigma(h)$ 2500. We test the devices by measuring capillary filling speed in different channel heights, ranging from 14 to 310 nm. These tests reproduce as well as extend the results reported by Tas et al (2004 Appl. Phys. Lett. 85 3274). A systematic deviation from bulk behaviour has been observed for channel heights below 100 nm.

General information
State: Published
Organisations: Lab-on-a-Chip, Department of Micro- and Nanotechnology, Micro Array Technology
Pages: 245301
Publication date: 2007
Peer-reviewed: Yes

Publication information
Journal: Nanotechnology
Volume: 18
Issue number: 24
ISSN (Print): 0957-4484
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.01 SJR 1.079 SNIP 0.788
Web of Science (2017): Impact factor 3.404
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.87 SJR 1.339 SNIP 0.945
Web of Science (2016): Impact factor 3.44
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.07 SJR 1.257 SNIP 1.035
Web of Science (2015): Impact factor 3.573
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.09 SJR 1.497 SNIP 1.269
Web of Science (2014): Impact factor 3.821
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.74 SJR 1.602 SNIP 1.231
Web of Science (2013): Impact factor 3.672
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.34 SJR 1.861 SNIP 1.307
Web of Science (2012): Impact factor 3.842
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.86 SJR 1.899 SNIP 1.451
Web of Science (2011): Impact factor 3.979