Distribution and source of 129I, 239,240Pu, 137Cs in the environment of Lithuania - DTU Orbit (18/01/2019)

Distribution and source of 129I, 239,240Pu, 137Cs in the environment of Lithuania

Fifty five soil samples collected in the Lithuania territory in 2011 and 2012 were analyzed for 129I, 137Cs and Pu isotopes in order to investigate the level and distribution of artificial radioactivity in Lithuania. The activity and atomic ratio of 238Pu/239,240Pu, 129I/127I and 131I/137Cs were used to identify the origin of these radionuclides. The 238Pu/$^{239+240}$Pu and 240Pu/239Pu ratios in the soil samples analyzed varied in the range of 0.02 to 0.24, respectively, suggesting the global fallout as the major source of Pu in Lithuania. The values of 109 to 106 for 129I/127I atomic ratio revealed that the source of 129I in Lithuania is global fallout in most cases though several sampling sites shows a possible impact of reprocessing releases. Estimated 129I/131I ratio in soil samples from the southern part of Lithuania shows negligible input of the Chernobyl fallout. No correlation of the 137Cs and Pu isotopes with 129I was observed, indicating their different sources terms. Results demonstrate uneven distribution of these radionuclides in the Lithuanian territory and several sources of contamination i.e. Chernobyl accident, reprocessing releases and global fallout.

General information

State: Published
Organisations: Center for Nuclear Technologies, Radioecology and Tracer Studies, Center for Physical Sciences and Technology
Pages: 166-173
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Journal of Environmental Radioactivity
Volume: 151
ISSN (Print): 0265-931X
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.26 SJR 0.989 SNIP 1.377
Web of Science (2017): Impact factor 2.263
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.39 SJR 0.956 SNIP 1.488
Web of Science (2016): Impact factor 2.31
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.62 SJR 1.147 SNIP 1.555
Web of Science (2015): Impact factor 2.047
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.54 SJR 1.061 SNIP 1.72
Web of Science (2014): Impact factor 2.483
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.97 SJR 1.613 SNIP 2.059
Web of Science (2013): Impact factor 3.571
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.95 SJR 1.082 SNIP 1.71
Web of Science (2012): Impact factor 2.119
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.61 SJR 1.106 SNIP 1.638
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.913 SNIP 1.266
Web of Science (2010): Impact factor 1.466
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.956 SNIP 1.549
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.752 SNIP 1.433
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.951 SNIP 1.257
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.799 SNIP 1.305
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.895 SNIP 1.403
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.753 SNIP 1.681
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.578 SNIP 0.916
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.595 SNIP 1.042
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.622 SNIP 1.101
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.08 SNIP 1.036
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.169 SNIP 1.216
Original language: English
Keywords: 129-Iodine, 137-Cesium, Plutonium, Reprocessing releases, Atomic ratio, Chernobyl accident
Electronic versions:
JER2015_Pu_129I.pdf. Embargo ended: 22/10/2017
DOIs:
10.1016/j.jenvrad.2015.09.020
Source: PublicationPreSubmission
Source-ID: 118477173
Research output: Research - peer-review › Journal article – Annual report year: 2016