Distributed Model Predictive Control for Smart Energy Systems

Publication: Research - peer-reviewJournal article – Annual report year: 2016

DOI

View graph of relations

Integration of a large number of flexible consumers in a smart grid requires a scalable power balancing strategy. We formulate the control problem as an optimization problem to be solved repeatedly by the aggregator in a model predictive control framework. To solve the large-scale control problem in real-time requires decomposition methods. We propose a decomposition method based on Douglas–Rachford splitting to solve this large-scale control problem. The method decomposes the problem into smaller subproblems that can be solved in parallel, e.g., locally by each unit connected to an aggregator. The total power consumption is controlled through a negotiation procedure between all cooperating units and an aggregator that coordinates the overall objective. For large-scale systems, this method is faster than solving the original problem and can be distributed to include an arbitrary number of units. We show how different aggregator objectives are implemented and provide simulations of the controller including the computational performance.
Original languageEnglish
JournalIEEE Transactions on Smart Grid
Volume7
Issue number3
Pages (from-to)1675-1682
ISSN1949-3053
DOIs
StatePublished - 2016
CitationsWeb of Science® Times Cited: 4

    Keywords

  • Smart grid, Model predictive control, Douglas-Rachford splitting
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 123810664