Distortional Mechanics of Thin-Walled Structural Elements

Publication: ResearchPh.D. thesis – Annual report year: 2012

Documents

View graph of relations

In several industries such as civil, mechanical, and aerospace, thin-walled structures are often used due to the high strength and effective use of the materials. Because of the increased consumption there has been increasing focus on optimizing and more detailed calculations. However, finely detailed calculations will be very time consuming, if not impossible, due to the large amount of degrees of freedom needed. The present thesis deals with a novel mode-based approach concerning more detailed calculation in the context of distortion of the cross section which model distortion by a limited number of degrees of freedom. This means that the classical Vlasov thin-walled beam theory for open and closed cross sections is generalized as part of a semi-discretization process by including distortional displacement fields. A novel finite-element-based displacement approach is used in combination with a weak formulation of the shear constraints and constrained wall widths. The weak formulation of the shear constraints enables analysis of both open and closed cell cross-sections by allowing constant shear flow. Variational analysis is used to establish and identify the uncoupled set of homogeneous and non-homogeneous differential equations and the related solutions.
The developed semi-discretization approach to Generalized Beam Theory (GBT) is furthermore extended to include the geometrical stiffness terms for column buckling analysis based on an initial stress approach. Through variations in the potential energy a modified set of coupled homogeneous differential equations of GBT including initial stress is establish and solved. In this context instability solutions are found for simply supported columns and by solving the reduced order differential equations the cross-section displacement mode shapes and buckling load factor are given.
In order to handle arbitrary boundary conditions as well as the possibility to add concentrated loads as nodal loads the formulation of a generalized onedimensional semi-discretized thin-walled beam element including distortional contributions is developed. From the full assembled homogenous solution as well as the full assembled non-homogeneous solution the generalized displacements of the exact full solution along the beam are found.
This new approach is a considerable theoretical development since the obtained GBT equations including distributed loading found by discretization of the cross section are now solved analytically and the formulation is valid without special attention and approximation also for closed single or multi-cell cross sections. Furthermore, the found eigenvalues have clear mechanical meaning, since they represent the attenuation of the distortional eigenmodes and may be used in the automatic meshing of approximate distortional beam elements. The magnitude of the eigenvalues thus also gives the natural ordering of the modes.
The results are compared to results found using other computational methods taking distortion of the cross section into account. Thus, the results are compared to results found using the commercial FE program Abaqus as well as the free available software GBTUL and CUFSM concerning conventional GBT and the finite strip method, respectively. Reasonable matches are obtained in all cases which confirm that this new approach to GBT provides reasonable results with a very small computational cost making it a good alternative to the classical FE calculations and other available methods.
Original languageEnglish
Publication date2012
Place of publicationKgs. Lyngby
PublisherTechnical University of Denmark
Number of pages266
ISBN (print)9788778773555
StatePublished
NameBYG Rapport
ISSN (print)1601-2917
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 51219076