Distinct DC subsets regulate adaptive Th1 and 2 responses during Trichuris muris infection
- DTU Orbit (25/12/2018)

Distinct DC subsets regulate adaptive Th1 and 2 responses during Trichuris muris infection

Low- and high-dose infections with the murine large intestinal nematode *Trichuris muris* are associated with induction of adaptive Th1 and Th2 responses, respectively, in mesenteric lymph nodes (MLN). Classical dendritic cells (cDC) accumulate in the large intestinal mucosa and MLN upon *T. muris* infection, yet their role in driving adaptive responses to infection remains largely unknown. We performed low- and high-dose *T. muris* infections of mice deficient in defined cDC subsets to investigate their role in induction of adaptive immune responses. Mice lacking IRF4-dependent cDC failed to clear a high-dose infection and displayed impaired Th2 responses. Conversely, mice lacking IRF8-dependent cDC cleared a low-dose infection and displayed an impaired Th1 response while increased production of Th2 cytokines. Finally, mice lacking both IRF4- and IRF8-dependent cDC were able to generate a Th2 response and clear a low-dose infection. Collectively, these results suggest that IRF4- and IRF8-dependent cDC act antagonistically during *T. muris* infection, and demonstrate that intestinal Th2 responses can be generated towards *T. muris* in the absence of IRF4-dependent cDC.

General information
State: Published
Organisations: National Veterinary Institute, Mucosal Immunology, Lund University
Contributors: Demiri, M., Müller-Luda, K., Agace, W. W., Svensson Frej, M.
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Parasite Immunology
Volume: 39
Issue number: 10
Article number: e12458
ISSN (Print): 0141-9838
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.56 SJR 1.173 SNIP 0.925
Web of Science (2017): Impact factor 2.836
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.37 SJR 1.11 SNIP 0.82
Web of Science (2016): Impact factor 2.493
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.97 SJR 1.054 SNIP 0.638
Web of Science (2015): Impact factor 1.917
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.06 SJR 0.971 SNIP 0.719
Web of Science (2014): Impact factor 2.143
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.02 SJR 0.943 SNIP 0.741
Web of Science (2013): Impact factor 1.849
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.49 SJR 0.957 SNIP 0.881
Web of Science (2012): Impact factor 2.208
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.24 SJR 0.95 SNIP 0.865
Web of Science (2011): Impact factor 2.601
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.087 SNIP 0.814
Web of Science (2010): Impact factor 2.357
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.807 SNIP 0.757
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.186 SNIP 0.857
Scopus rating (2007): SJR 0.935 SNIP 0.715
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.859 SNIP 0.708
Scopus rating (2005): SJR 0.615 SNIP 0.59
Scopus rating (2004): SJR 0.895 SNIP 0.761
Scopus rating (2003): SJR 0.904 SNIP 0.914
Scopus rating (2002): SJR 0.989 SNIP 0.814
Scopus rating (2001): SJR 0.988 SNIP 0.888
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.949 SNIP 0.79
Scopus rating (1999): SJR 0.914 SNIP 0.891
Original language: English
Keywords: Dendritic cells, Infection, Intestine, Mesenteric lymph nodes, Parasite, T helper cells
DOIs: 10.1111/pim.12458
Source: FindIt
Source-ID: 2390962153
Research output: Research - peer-review; Journal article – Annual report year: 2017