Dissemination of antibiotic resistance genes from antibiotic producers to pathogens

Dissemination of antibiotic resistance genes from antibiotic producers to pathogens

It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens, that appear to be closely related to actinobacterial ARGs known to confer resistance against clinically important antibiotics. Furthermore, we identify two potential examples of recent horizontal transfer of actinobacterial ARGs to proteobacterial pathogens. Based on this bioinformatic evidence, we propose and experimentally test a 'carry-back' mechanism for the transfer, involving conjugative transfer of a carrier sequence from proteobacteria to actinobacteria, recombination of the carrier sequence with the actinobacterial ARG, followed by natural transformation of proteobacteria with the carrier-sandwiched ARG. Our results support the existence of ancient and, possibly, recent transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide evidence for a defined mechanism.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, New Bioactive Compounds, Research Groups, Bacterial Synthetic Biology, Department of Biotechnology and Biomedicine
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Nature Communications
Volume: 8
Article number: 15784
ISSN (Print): 2041-1723
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 11.8 SJR 6.399 SNIP 2.995
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 6.364 SNIP 3.053 CiteScore 11.23
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 6.331 SNIP 3.091 CiteScore 10.77
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 5.967 SNIP 2.776 CiteScore 9.85
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): SJR 5.586 SNIP 2.724 CiteScore 8.32
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Scopus rating (2011): SJR 3.122 SNIP 1.544 CiteScore 4.44
ISI indexed (2011): ISI indexed no
Web of Science (2010): Indexed yes
Original language: English
Antibiotics, Bacterial evolution, Bacterial genetics, Evolutionary genetics
Electronic versions:
ncomms15784.pdf
DOIs: 10.1038/ncomms15784

Bibliographical note
This article is licensed under a Creative Commons Attribution 4.0 International License.
Dissemination of antibiotic resistance genes from antibiotic producers to pathogens

Source: FindIt

Source-ID: 2371240976

Publication: Research - peer-review › Journal article – Annual report year: 2017