Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire

The tensile properties and the deformation microstructure of pearlitic steel (0.8 wt % C) have been quantified in wires drawn to strains in the range from 3.7 to 5.4, having a flow stress in the range from 3.5 to 4.5 GPa. With increasing strain the interlamellar spacing (ILS) decreases from about 20 to 10 nm and the thickness of the cementite lamellae decreases from about 2 nm to about 0.7 nm, representing a structure, which breaks up at large strains, decomposes and releases carbon to the ferrite lamellae. The dislocation density increases continuously with strain and reaches about 5 x 10^16 m^-2 at a strain of 5.4; the dislocations are stored as threading dislocations, as dislocation tangles and as cell boundaries with low to medium misorientation angles. An analysis of the evolution of microstructure and strength with increasing strain suggests that dislocation-based plasticity is a dominating mechanism in the wire and three strengthening mechanisms are applied: boundary strengthening, dislocation strengthening and solid solution hardening with their relative contributions to the total flow stress which change as the strain is increased. Based on linear additivity good correspondence between the calculated and the measured flow stress is observed over the strain range 0e5.4. However at large strains beyond 3.7 deviations are observed which are discussed in terms of the applied strength-structure relationships.

General information
State: Published
Organisations: Department of Wind Energy, Materials science and characterization, Tsinghua University
Contributors: Zhang, X., Hansen, N., Godfrey, A., Huang, X.
Pages: 176-183
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Acta Materialia
Volume: 114
ISSN (Print): 1359-6454
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.18 SJR 3.263 SNIP 2.737
Web of Science (2017): Impact factor 6.036
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.67 SJR 3.21 SNIP 2.702
Web of Science (2016): Impact factor 5.301
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.22 SJR 3.417 SNIP 2.831
Web of Science (2015): Impact factor 5.058
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.16 SJR 3.885 SNIP 3.166
Web of Science (2014): Impact factor 4.465
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.37 SJR 3.238 SNIP 2.674
Web of Science (2013): Impact factor 3.94
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.28 SJR 3.37 SNIP 2.875
Web of Science (2012): Impact factor 3.941
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.27 SJR 3.215 SNIP 2.768
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 3.709 SNIP 2.698
Web of Science (2010): Impact factor 3.791
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 3.663 SNIP 2.625
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 3.82 SNIP 2.774
Web of Science (2008): Indexed yes
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 3.615 SNIP 3.118
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 3.22 SNIP 3.038
Scopus rating (2004): SJR 3.308 SNIP 3.073
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 3.852 SNIP 3.258
Web of Science (2003): Indexed yes
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 3.198 SNIP 2.73
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 3.22 SNIP 2.164
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 3.069 SNIP 2.167
Original language: English
Keywords: Sub-20 nm lamellar structure, Dislocation-based plasticity, Strengthening mechanisms, Strength-structure relationship, Pearlitic steel wire
DOIs:
10.1016/j.actamat.2016.04.040
Source: PublicationPreSubmission
Source-ID: 124074487
Research output: Research - peer-review › Journal article – Annual report year: 2016