Discovery of Bovine Digital Dermatitis-Associated Treponema spp. in the Dairy Herd Environment by a Targeted Deep-Sequencing Approach. - DTU Orbit (02/05/2019)

The bacteria associated with the infectious claw disease bovine digital dermatitis (DD) are spirochetes of the genus Treponema; however, their environmental reservoir remains unknown. To our knowledge, the current study is the first report of the discovery and phylogenetic characterization of rRNA gene sequences from DD-associated treponemes in the dairy herd environment. Although the spread of DD appears to be facilitated by wet floors covered with slurry, no DD-associated treponemes have been isolated from this environment previously. Consequently, there is a lack of knowledge about the spread of this disease among cows within a herd as well as between herds. To address the issue of DD infection reservoirs, we searched for evidence of DD-associated treponemes in fresh feces, in slurry, and in hoof lesions by deep sequencing of the V3 and V4 hypervariable regions of the 16S rRNA gene coupled with identification at the operational-taxonomic-unit level. Using treponeme-specific primers in this high-throughput approach, we identified small amounts of DNA (on average 0.6% of the total amount of sequence reads) from DD-associated treponemes in 43 of 64 samples from slurry and cow feces collected from six geographically dispersed dairy herds. Species belonging to the Treponema denticola/Treponema pedis-like and Treponema phagedenis-like phylogenetic clusters were among the most prevalent treponemes in both the dairy herd environment and the DD lesions. By the high-throughput approach presented here, we have demonstrated that cow feces and environmental slurry are possible reservoirs of DD-associated treponemes. This method should enable further clarification of the etiopathogenesis of DD.

General information
Publication status: Published
Organisations: National Veterinary Institute, Section for Bacteriology, Pathology and Parasitology
Contributors: Schou, K. K., Weiss Nielsen, M., Ingerslev, H., Boye, M., Jensen, T. K.
Number of pages: 6
Pages: 4427-4432
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume: 80
Issue number: 14
ISSN (Print): 0099-2240
Ratings:
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.02 SJR 1.857 SNIP 1.384
Web of Science (2014): Impact factor 3.668
Web of Science (2014): Indexed yes
Original language: English
Keywords: Environmental Microbiology
Electronic versions:
DOIs: 10.1128/AEM.00873-14
Source: FindIt
Source-ID: 267461594
Research output: Contribution to journal › Journal article – Annual report year: 2014 › Research › peer-review