CRISPR-Cas systems in bacteria and archaea provide immunity against bacteriophages and plasmids. To overcome CRISPR immunity, phages have acquired anti-CRISPR genes that reduce CRISPR-Cas activity. Using a synthetic genetic circuit, we developed a high-throughput approach to discover anti-CRISPR genes from metagenomic libraries based on their functional activity rather than sequence homology or genetic context. We identified 11 DNA fragments from soil, animal, and human metagenomes that circumvent Streptococcus pyogenes Cas9 activity in our selection strain. Further in vivo and in vitro characterization of a subset of these hits validated the activity of four anti-CRISPRs. Notably, homologs of some of these anti-CRISPRs were detected in seven different phyla, namely Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, Spirochaetes, and Balneolaeota, and have high sequence identity suggesting recent horizontal gene transfer. Thus, anti-CRISPRs against type II-A CRISPR-Cas systems are widely distributed across bacterial phyla, suggesting a more complex ecological role than previously appreciated.

General information

State: Published
Organisations: Bacterial Synthetic Biology, Novo Nordisk Foundation Center for Biosustainability
Contributors: Vazquez-Uribe, R., van der Helm, E., Misiakou, M., Lee, S., Kol, S., Sommer, M. O. A.
Pages: 233-241
Publication date: 2019
Peer-reviewed: Yes

Publication information

Journal: Cell Host & Microbe
Volume: 25
Issue number: 2
ISSN (Print): 1931-3128
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 11.62 SJR 9.146 SNIP 2.334
Web of Science (2017): Impact factor 17.872
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 9.94 SJR 8.633 SNIP 1.945
Web of Science (2016): Impact factor 14.946
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 9.92 SJR 8.206 SNIP 1.968
Web of Science (2015): Impact factor 12.552
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 9.34 SJR 8.156 SNIP 1.955
Web of Science (2014): Impact factor 12.328
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 9.69 SJR 8.148 SNIP 2.104
Web of Science (2013): Impact factor 12.194
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 9.52 SJR 7.668 SNIP 2.215
Web of Science (2012): Impact factor 12.609
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 9.61 SJR 7.944 SNIP 2.447
Web of Science (2011): Impact factor 13.5