Discovering two-dimensional topological insulators from high-throughput computations -
DTU Orbit (09/04/2019)

Discovering two-dimensional topological insulators from high-throughput computations

We have performed a computational screening of topological two-dimensional (2D) materials from the Computational 2D Materials Database (C2DB) employing density functional theory. A full ab initio scheme for calculating hybrid Wannier functions directly from the Kohn-Sham orbitals has been implemented and the method was used to extract Z_2 indices, Chern numbers, and mirror Chern numbers of 3331 2D systems including both experimentally known and hypothetical 2D materials. We have found a total of 48 quantum spin Hall insulators, seven quantum anomalous Hall insulators, and 21 crystalline topological insulators. Roughly 75% are predicted to be dynamically stable and one-third was known prior to the screening. The most interesting of the topological insulators are investigated in more detail. We show that the calculated topological indices of the quantum anomalous Hall insulators are highly sensitive to the approximation used for the exchange-correlation functional and reliable predictions of the topological properties of these materials thus require methods beyond density functional theory. We also performed GW calculations, which yield a gap of 0.65 eV for the quantum spin Hall insulator PdSe$_2$ in the MoS$_2$ crystal structure. This is significantly higher than any known 2D topological insulator and three times larger than the Kohn-Sham gap.

General information
Publication status: Published
Organisations: Theoretical Atomic-scale Physics, Department of Physics, Center for Nanostructured Graphene, Technical University of Denmark
Contributors: Olsen, T., Andersen, E., Okugawa, T., Torelli, D., Deilmann, T., Thygesen, K. S.
Number of pages: 11
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Physical Review Materials
Volume: 3
Issue number: 2
Article number: 024005
ISSN (Print): 2475-9953
Ratings:
Web of Science (2019): Indexed yes
Original language: English
Electronic versions:
PhysRevMaterials.3.024005.pdf
DOIs: 10.1103/PhysRevMaterials.3.024005
Source: Scopus
Source-ID: 85062540154
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review