Discovering Music Structure via Similarity Fusion

Publication: ResearchSound/Visual production (digital) – Annual report year: 2007

Documents

View graph of relations

Automatic methods for music navigation and music recommendation exploit the structure in the music to carry out a meaningful exploration of the “song space”. To get a satisfactory performance from such systems, one should incorporate as much information about songs similarity as possible; however, how to do so is not obvious. In this paper, we build on the ideas of the Probabilistic Latent Semantic Analysis (PLSA) that have been successfully used in the document retrieval community. Under this probabilistic framework, any song will be projected into a relatively low dimensional space of “latent semantics”, in such a way that all observed similarities can be satisfactorily explained using the latent semantics. Therefore, one can think of these semantics as the real structure in music, in the sense that they can explain the observed similarities among songs. The suitability of the PLSA model for representing music structure is studied in a simplified scenario consisting of 4412 songs and two similarity measures among them. The results suggest that the PLSA model is a useful framework to combine different sources of information, and provides a reasonable space for song representation.
Original languageEnglish
Publication date2007
StatePublished

Conference

ConferenceNIPS Workshop on Music, Brain & Cognition: Learning the Structure of Music and its Effects on the Brain
CityWhistler, Canada
Period01/01/07 → …

Keywords

  • Similarity Measure, Pattern Recognition, NMF, PLSA
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 3647253