Direct detection of single-nucleotide polymorphisms in bacterial DNA by SNPtrap

Publication: Research - peer-reviewJournal article – Annual report year: 2011

View graph of relations

A major challenge with single-nucleotide polymorphism (SNP) fingerprinting of bacteria and higher organisms is the combination of genome-wide screenings with the potential of multiplexing and accurate SNP detection. Single-nucleotide extension by the minisequencing principle represents a technology that both is highly accurate and enables multiplexing. A current bottleneck for direct genome analyses by minisequencing, however, is the sensitivity, since minisequencing relies on linear signal amplification. Here, we present SNPtrap, which is a novel approach that combines the specificity and possibility of multiplexing by minisequencing with the sensitivity obtained by logarithmic signal amplification by polymerase chain reaction (PCR). We show a SNPtrap proof of principle in a model system for two polymorphic SNP sites in the Salmonella tetrathionate reductase gene (ttrC).
Original languageEnglish
JournalPreparative Biochemistry and Biotechnology
Publication date2011
Volume41
Issue2
Pages166-174
ISSN1082-6068
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 0
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5567431