Diluted Oxide Interfaces with Tunable Ground States - DTU Orbit (05/05/2019)

Diluted Oxide Interfaces with Tunable Ground States

The metallic interface between two oxide insulators, such as LaAlO$_3$/SrTiO$_3$ (LAO/STO), provides new opportunities for electronics and spintronics. However, due to the presence of multiple orbital populations, tailoring the interfacial properties such as the ground state and metal-insulator transitions remains challenging. Here, an unforeseen tunability of the phase diagram of LAO/STO is reported by alloying LAO with a ferromagnetic LaMnO$_3$ insulator without forming lattice disorder and at the same time without changing the polarity of the system. By increasing the Mn-doping level, x, of LaAl$_{1-x}$Mn$_x$O$_3$ (STO), the interface undergoes a Lifshitz transition at $x = 0.225$ across a critical carrier density of $n_c = 2.8 \times 10^{13}$ cm$^{-2}$, where a peak $T_{SC} \approx 255$ mK of superconducting transition temperature is observed. Moreover, the LaAl$_{1-x}$Mn$_x$O$_3$ turns ferromagnetic at $x \geq 0.25$. Remarkably, at $x = 0.3$, where the metallic interface is populated by only d_{xy} electrons and just before it becomes insulating, a same device with both signatures of superconductivity and clear anomalous Hall effect (7.6×10^{12} cm$^{-2} < n_s \leq 1.1 \times 10^{13}$ cm$^{-2}$) is achieved reproducibly. This provides a unique and effective way to tailor oxide interfaces for designing on-demand electronic and spintronic devices.

General information
Publication status: Published
Organisations: Functional Oxides, Department of Energy Conversion and Storage, Chinese Academy of Sciences, University of Antwerp, University of Copenhagen, Technical University of Denmark
Number of pages: 24
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Advanced Materials
Volume: 31
Issue number: 10
Article number: 1805970
ISSN (Print): 0935-9648
Ratings:
BFI (2019): BFI-level 3
Web of Science (2019): Indexed yes
Original language: English
Keywords: 2D electron liquid, Anomalous Hall effect, Metal-insulator transitions, Oxide interfaces, Superconductivity
DOIs:
10.1002/adma.201805970
Source: PublicationPreSubmission
Source-ID: 164384806
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review