Differentiated long term projections of the hourly electricity consumption in local areas. The case of Denmark West - DTU Orbit (17/01/2019)

Assessing grid developments the spatial distribution of the electricity consumption is important. In Denmark the electricity grid consists of transmission – and local distribution grids with different voltages that are connected via transformer stations each covering a local area with between 10,000 and 100,000 customers. Data for the hourly electricity consumption at transformer stations shows that the profile of consumption differs considerably between local areas, and this is partly due to a different weight of categories of customers in the different areas. Categories of customers have quite distinct consumption profiles and contribute quite differently to the aggregated load profile. In forecasts, demand by categories of customers is expected to develop differently implying that both the level and the profile of consumption at each transformer stations are expected to change differently. Still, in the previous planning of the transmission grid in Denmark specific local conditions have not been considered. As a first step towards differentiated local load forecasts, the paper presents a new model for long term projections of consumption in local areas and illustrates a first use of the model related to the transmission grid planning by the Danish TSO Energinet.dk.

The model is a distribution system that distributes hourly consumption in an aggregated area to hourly consumption at each transformer station. Using econometrics, the model is estimated on national statistics for the hourly consumption by categories of customers and data for the hourly consumption at each transformer station for the years 2009–2011.

Applying the model for load forecasts, a major conclusion is that different transformer stations will experience different changes both in the level - and in the hourly profile of load.

© 2014 Elsevier Ltd. All rights reserved.

General information
State: Published
Organisations: Department of Management Engineering, Systems Analysis, Energy Systems Analysis, Energinet.dk
Contributors: Møller Andersen, F., Larsen, H. V., Juul, N., Gaardestrup, R.
Pages: 523–538
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Applied Energy
Volume: 135
ISSN (Print): 0306-2619
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 8.44 SJR 3.162 SNIP 2.765
Web of Science (2017): Impact factor 7.9
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.78 SJR 3.011 SNIP 2.61
Web of Science (2016): Impact factor 7.182
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.4 SJR 2.835 SNIP 2.593
Web of Science (2015): Impact factor 5.746
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.93 SJR 3.158 SNIP 3.218
Web of Science (2014): Impact factor 5.613
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 6.59 SJR 3.06 SNIP 3.346
Web of Science (2013): Impact factor 5.261
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.69 SJR 2.778 SNIP 3.076
Web of Science (2012): Impact factor 4.781
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 5.5 SJR 2.416 SNIP 2.827
Web of Science (2011): Impact factor 5.106
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.531 SNIP 2.259
Web of Science (2010): Impact factor 3.915
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.992 SNIP 1.85
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.95 SNIP 1.206
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.168 SNIP 1.704
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.95 SNIP 1.277
Scopus rating (2005): SJR 1.02 SNIP 0.988
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.67 SNIP 0.844
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.713 SNIP 0.775
Scopus rating (2002): SJR 0.589 SNIP 0.779
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.368 SNIP 0.567
Scopus rating (2000): SJR 0.154 SNIP 0.498
Scopus rating (1999): SJR 0.181 SNIP 0.443
Original language: English
Keywords: Hourly electricity consumption, Local areas, Econometric modelling, Load forecasting
DOIs:
10.1016/j.apenergy.2014.08.075
Source: PublicationPreSubmission
Source-ID: 100218363
Research output: Research - peer-review ; Journal article – Annual report year: 2014